• Title/Summary/Keyword: Key Technology

Search Result 9,807, Processing Time 0.045 seconds

Estimating the Economic Effects of Smart Tourism Mobility in Seoul: Using RAS Method (RAS 기법을 활용한 서울 스마트관광 모빌리티의 경제적 파급효과 분석)

  • Hyunae Lee;Hyunji Kim;Namho Chung
    • Knowledge Management Research
    • /
    • v.24 no.4
    • /
    • pp.131-152
    • /
    • 2023
  • One of the key domains within a smart tourism city, smart mobility, encompasses advanced transportation means and services rooted in Information and Communication Technology (ICT). This includes shared bicycles, scooters, car-sharing services, smart transportation infrastructure, and more, aiming to surpass limitations of conventional transport and improve the movement of people and goods. It also serves tourists as an affordable and convenient mode of transport between attractions while also enhancing the overall travel experience. This study has defined 'smart tourism mobility' as a form of mobility grounded in ICT, exhibiting exceptional connectivity, serving public interest, and serving as a mode of transport for both residents and tourists in a smart tourism city. The research aimed to outline the scope of smart tourism mobility-related industries through expert Delphi surveys and estimate their economic effects within a smart tourism city. Specifically, this study updated 2015 input-output table and made 2020 regional input-output table of Seoul adopting RAS method and location quotient method. The results showed that the about 2.8 billion KRW investment of Seoul in smart tourism mobility may create more than 4.1 billion KRW in production inducement effect which is expected to create more than 1.6 billion KRW of income-inducing effect, 3.6 billion KRW of value-added-inducing effect, and 54 employment across all industries in Seoul in 2022.

Analysis of Policy Trends in Convergence Research and Development Using Unstructured Text Data (비정형 텍스트 데이터를 활용한 융합연구개발의 정책 동향 분석 )

  • Jiye Rhee;JaeEun Shin
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.177-191
    • /
    • 2024
  • This study aims to analyze policy changes over time by conducting a textual analysis of the basic plan for activating convergence research and development. By examining the basic plan for convergence research development, this study looks into changes in convergence research policies and suggests future directions, thereby exploring strategic approaches that can contribute to the advancement of science and technology and societal development in our country. In particular, it sought to understand the policy changes proposed by the basic plan by identifying the relevance and trends of topics over time. Various analytical methods such as TF-IDF analysis, topic modeling (LDA), and network (CONCOR) analysis were used to identify the key topics of each period and grasp the trends in policy changes. The analysis revealed clustering of topics by period and changes in topics, providing directions for the convergence research ecosystem and addressing pressing issues. The results of this study are expected to provide important insights to various stakeholders such as governments, businesses, academia, and research institutions, offering new insights into the changes in policies proposed by previous basic plans from a macroscopic perspective.

Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods (딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰)

  • Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2024
  • Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.

Korean Clinical Imaging Guidelines for Justification of Diagnostic Imaging Study for COVID-19 (한국형 COVID-19 흉부영상 진단 시행 가이드라인)

  • Kwang Nam Jin;Kyung-Hyun Do;Bo Da Nam;Sung Ho Hwang;Miyoung Choi;Hwan Seok Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.265-283
    • /
    • 2022
  • To develop Korean coronavirus disease (COVID-19) chest imaging justification guidelines, eight key questions were selected and the following recommendations were made with the evidence-based clinical imaging guideline adaptation methodology. It is appropriate not to use chest imaging tests (chest radiograph or CT) for the diagnosis of COVID-19 in asymptomatic patients. If reverse transcription-polymerase chain reaction testing is not available or if results are delayed or are initially negative in the presence of symptoms suggestive of COVID-19, chest imaging tests may be considered. In addition to clinical evaluations and laboratory tests, chest imaging may be contemplated to determine hospital admission for asymptomatic or mildly symptomatic un-hospitalized patients with confirmed COVID-19. In hospitalized patients with confirmed COVID-19, chest imaging may be advised to determine or modify treatment alternatives. CT angiography may be considered if hemoptysis or pulmonary embolism is clinically suspected in a patient with confirmed COVID-19. For COVID-19 patients with improved symptoms, chest imaging is not recommended to make decisions regarding hospital discharge. For patients with functional impairment after recovery from COVID-19, chest imaging may be considered to distinguish a potentially treatable disease.

Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study

  • Yae Won Park;Ki Sung Park;Ji Eun Park;Sung Soo Ahn;Inho Park;Ho Sung Kim;Jong Hee Chang;Seung-Koo Lee;Se Hoon Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Objective: Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. Materials and Methods: Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). Results: In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. Conclusion: The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.

A Study for Comparing the Legal Importance of Digital Forensics Issues in Korea (국내 디지털 포렌식 분야에서 법률적 이슈사항의 중요도 인식에 따른 우선순위 비교 연구)

  • Jae Bin Lee;Won Kyung Sung;Choong C. Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.185-209
    • /
    • 2017
  • In modern society, crime records have been digitized. Digital information is difficult to distinguish from original information, but the former is easy to modulate. This situation explains the increasing importance of digital forensics. However, digital forensic has several inefficiencies because of the rapid development of technology, unclear jurisdiction, and tool errors. This study surveyed digital forensic specialists and derived the priority of domestic digital forensic issues by redefining 17 issues in digital forensics from Brungs-Jamieson study in Australia. The present study was divided into four groups, namely, police, government and public corporations, private companies, and legal groups. The study could compare and analyze comparative analysis of existing studies in Australia and the US. This study can also examine differences in the results of each group in Korea. Thus, the key issues in Korea were derived as "Requirements to 'Fire Up' Original." The differences of the three groups in terms of legal issues were then identified. This finding enables us to understand differences in priorities and importance between groups and countries.

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

A Study to Improve the Trustworthiness of Data Repositories by Obtaining CoreTrustSeal Certification (CoreTrustSeal 인증 획득을 통한 데이터 리포지토리의 신뢰성 향상을 위한 연구)

  • Hea Lim Rhee;Jung-Ho Um;Youngho Shin;Hyung-jun Yim;Na-eun Han
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.2
    • /
    • pp.245-268
    • /
    • 2024
  • As the recognition of data's value increases, the role of data repositories in managing, preserving, and utilizing data is becoming increasingly important. This study investigates ways to enhance the trustworthiness of data repositories through obtaining CoreTrustSeal (CTS) certification. Trust in data repositories is critical not only for data protection but also for building and maintaining trust between the repository and stakeholders, which in turn affects researchers' decisions on depositing and utilizing data. The study examines the CoreTrustSeal, an international certification for trustworthy data repositories, analyzing its impact on the trustworthiness and efficiency of repositories. Using the example of DataON, Korea's first CTS-certified repository operated by the Korea Institute of Science and Technology Information (KISTI), the study compares and analyzes four repositories that have obtained CTS certification. These include DataON, the Physical Oceanography Distributed Active Archive Center (PO.DAAC) from NASA, Yareta from the University of Geneva, and the DARIAH-DE repository from Germany. The research assesses how these repositories meet the mandatory requirements set by CTS and proposes strategies for improving the trustworthiness of data repositories. Key findings indicate that obtaining CTS certification involves rigorous evaluation of organizational infrastructure, digital object management, and technological aspects. The study highlights the importance of transparent data processes, robust data quality assurance, enhanced accessibility and usability, sustainability, security measures, and compliance with legal and ethical standards. By implementing these strategies, data repositories can enhance their reliability and efficiency, ultimately promoting wider data sharing and utilization in the scientific community.