• Title/Summary/Keyword: Key Technology

Search Result 9,620, Processing Time 0.033 seconds

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

GPS phase measurement cycle-slip detection based on a new wavelet function

  • Zuoya, Zheng;Xiushan, Lu;Xinzhou, Wang;Chuanfa, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.91-96
    • /
    • 2006
  • Presently, cycle-slip detection is done between adjacent two points in many cycle-slip methods. Inherently, it is simple wavelet analysis. A new idea is put forward that the number of difference point can adjust by a parameter factor; we study this method to smooth raw data and detect cycle-slip with wavelet analysis. Taking CHAMP satellite data for example, we get some significant conclusions. It is showed that it is valid to detect cycle-slip in GPS phase measurement based on this wavelet function, and it is helpful to improve the precision of GPS data pre-processing and positioning.

  • PDF

An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar

  • Han, Fei;Liu, Hengjia;Sun, Dongsong;Han, Yuli;Zhou, Anran;Zhang, Nannan;Chu, Jiaqi;Zheng, Jun;Jiang, Shan;Wang, Yuanzu
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.69-80
    • /
    • 2020
  • A Rayleigh Lidar used for wind detection works by transmitting laser pulses to the atmosphere and receiving backscattering signals from molecules. Because of the weak backscattering signals, a lidar usually uses a high sensitivity photomultiplier as detector and photon counting technology for signal collection. The capturing of returned extremely weak backscattering signals requires the lidar to work on dark background with a long time accumulation to get high signal-to-noise ratio (SNR). Because of the strong solar background during the day, the SNR of lidar during daytime is much lower than that during nighttime, the altitude and accuracy of detection are also restricted greatly. Therefore this article describes an ultra-narrow bandwidth filter (UNBF) that has been developed on 354.7 nm wavelength of laser. The UNBF is used for suppressing the strong solar background that degrades the performance of Rayleigh wind lidar during daytime. The optical structure of UNBF consists of an interference filter (IF), a low resolution Fabry-Perot interferometer (FPI) and a high resolution FPI. The parameters of each optical component of the UNBF are presented in this article. The transmission curve of the aligned UNBF is measured with a tunable laser. Contrasting the result of with-UNBF and with-IF shows that the solar background received by a Licel transient recorder decreases by 50~100 times and that the SNR with-UNBF was improved by 3 times in the altitude range (35 km to 40 km) compared to with-IF at 10:26 to 10:38 on August 29, 2018. By the SNR comparison at four different times of one day, the ratio-values are larger than 1 over the altitude range (25~50 km) in general, the results illustrate that the SNR with-UNBF is better than that with-IF for Rayleigh Lidar during daytime and they demonstrate the effective improvements of solar background restriction of UNBF.

Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows

  • Khan, Muhammad Zahoor;Zhang, Zhichao;Liu, Lei;Wang, Di;Mi, Siyuan;Liu, Xueqin;Liu, Gang;Guo, Gang;Li, Xizhi;Wang, Yachun;Yu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1507-1519
    • /
    • 2020
  • Objective: The current research was aimed to profile the transcriptomic picture of the peripheral blood lymphocytes (PBLs) associated with immunity in Chinese Holsteins supplemented orally with coated folic acid during the periparturient period. Methods: The total of 123 perinatal cows were selected for this study and divided into three groups; group A (n = 41, 240 mg/500 kg cow/d), group B (n = 40, 120 mg/500 kg cow/d) and group C (n = 42, 0 mg/cow/d) based on the quantity of folic acid fed. Three samples of PBLs were selected from each folic acid treated group (high, low, and control) and RNA sequencing method was carried out for transcriptomic analysis. Results: The analysis revealed that a higher number of genes and pathways were regulated in response to high and low folic acid supplementation compared to the controls. We reported the novel pathways tumor necrosis factor (TNF) signaling, antigen processing and presentation, Staphylococcus aureus infection and nuclear factor (NF)-kappa B signaling pathways) and the key genes (e.g. C-X-C motif chemokine ligand 10, TNF receptor superfamily member 1A, cluster difference 4, major histocompatibility complex, class II, DQ beta, NF-kappa-B inhibitor alpha, and TNF superfamily 13) having great importance in immunity and anti-inflammation in the periparturient cows in response to coated folic acid treatment. Conclusion: Collectively, our study profiled first-time transcriptomic analysis of bovine lymphocytes and compared the involved cytokines, genes, and pathways between high vs control and low vs control. Our data suggest that the low folic acid supplementation (120 mg/500 kg) could be a good choice to boost appropriate immunity and anti-inflammation as well as might being applied to the health improvement of perinatal dairy cows.

Moderating effect of regulatory focus on public acceptance of nuclear energy

  • He, Yanling;Li, Yazhou;Xia, Dongqin;Zhang, Tingting;Wang, Yongliang;Hu, Li;Gu, Jibao;Wu, Yican
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2034-2041
    • /
    • 2019
  • Public acceptance has become the most critical question for sustainable development of nuclear energy in recent decades. Many researches concentrated on risk and benefit perception, which were deemed as the most influential factors of Public Acceptance of Nuclear Energy (PANE). But few researches focused on psychological factors including regulatory focus. Therefore, this paper aimed to explore the moderating effect of regulatory focus on PANE based on Regulatory Focus Theory in order to find ways to increase/decrease PANE. An Internet-based survey had been carried out in China nationwide. The results indicated that trust in government was positively related to PANE and this relationship was mediated by risk and benefit perception. In addition, the strength of the associations between risk and benefit perception and PANE were moderated by regulatory focus, consisting of prevention focus and promotion focus. Prevention focus strengthened the negative relationship between risk perception and PANE, while promotion focus weakened. Moreover, promotion focus weakened the positive relationship between benefit perception and PANE, but no significant moderating effect of prevention focus was founded on the relationship between benefit perception and PANE. Some policy implications were also proposed on the basis of above-mentioned findings.

Preparation of W-V functionally gradient material by spark plasma sintering

  • Tang, Yi;Qiu, Wenbin;Chen, Longqing;Yang, Xiaoliang;Song, Yangyipeng;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1706-1713
    • /
    • 2020
  • Functionally gradient material (FGM) is promisingly effective in mitigating the thermal stress between plasma facing materials (PFM) and structural materials. However, the corresponding research with respect to W/V FGM has not been reported yet. In this work, we firstly report the successful fabrication of W/V FGM by a combined technology of mechanical alloying (MA) and spark plasma sintering (SPS). The microhardness and microstructure of the consolidated sample were both investigated. W/V stacks show significantly enhanced microhardness (>100%) compared with pure W plate, which is beneficial to the integral strength of the hybrid structure. Furthermore, we clarify that the different ductility of W and V should be carefully considered, otherwise W/V powder might aggregate and lead to the formation of compositional segregation, and simultaneously unmask the impact of V proportion on the distribution of second phase in W-V binary alloy system. This work provides an innovative approach for obtaining W-V connections with much better performance.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

Bonding and Etchback Silicon-on-Diamond Technology

  • Jin, Zengsun;Gu, Changzhi;Meng, Qiang;Lu, Xiangyi;Zou, Guangtian;Lu, Jianxial;Yao, Da;Su, Xiudi;Xu, Zhongde
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • The fabrication process of silicon-diamond(SOD) structure wafer were studied. Microwave plasma chemical vapor deposition (MWPCVD) and annealing technology were used to synthesize diamond film with high resistivity and thermal conductivity. Bonding and etchback silicon-on-diamond (BESOD) were utilized to form supporting substrate and single silicon thin layer of SOD wafer. At last, a SOD structure wafer with 0.3~1$\mu\textrm{m}$ silicon film and 2$\mu\textrm{m}$ diamond film was prepared. The characteristics of radiation for a CMOS integrated circuit (IC) fabricated by SOD wafer were studied.

  • PDF