• 제목/요약/키워드: Key Constraints

검색결과 317건 처리시간 0.031초

의미적 제약조건을 고려한 XML 스키마의 변환 (XML Schema Transformation Considering Semantic Constraint)

  • 조정길
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.53-63
    • /
    • 2011
  • XML 데이터를 효율적으로 저장하고 질의하기 위하여 많은 기법들이 제안되었다. 이러한 목표를 위한 한 가지 방법은 XML 데이터를 관계형 형식으로 변환하여 관계형 데이터베이스를 사용하는 것이다. XML 문서의 내용, 구조, 의미 정보인 제약조건 보존은 스키마를 변환하는 과정에서 매우 중요하다. 특히 키 제약조건은 데이터베이스 이론의 중요한 부분을 차지한다. 따라서 제안된 기법은 주키와 외래키를 표현함으로써 XML의 의미를 반영하며, 변환하는 데에 XML 데이터의 키 제약조건뿐만 아니라 데이터의 내용과 구조와 의미도 보존한다. 변환 정보는 문서의 내용, 문서의 구조(부모-자식 관계), 함수적 종속성, XML key와 keyref 제약조건에 의해 포착한 문서의 의미이다. 제안된 기법은 XML 스키마를 변환할 때에 의미적 제약조건들의 보존을 보장함으로써 관계형 데이터베이스에서 데이터 무결성을 보장하기 위한 저장 프로시저나 트리거를 사용할 필요가 없는 이점이 있다. 이러한 변환은 산업체에서 필요한 데이터 관리의 한 부분으로, 이미 웹에 저장되어있는 데이터를 데이터베이스에 저장하여 다른 업무에 활용할 수가 있을 것이다. 본 논문에서는 DTD에서 지원하는 ID/IDREF 키, 상속 관계, 묵시적 참조 무결성은 반영하지 못하였다.

Efficient Resource Allocation with Multiple Practical Constraints in OFDM-based Cooperative Cognitive Radio Networks

  • Yang, Xuezhou;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2350-2364
    • /
    • 2014
  • This paper addresses the problem of resource allocation in amplify-and-forward (AF) relayed OFDM based cognitive radio networks (CRNs). The purpose of resource allocation is to maximize the overall throughput, while satisfying the constraints on the individual power and the interference induced to the primary users (PUs). Additionally, different from the conventional resource allocation problem, the rate-guarantee constraints of the subcarriers are considered. We formulate the problem as a mixed integer programming task and adopt the dual decomposition technique to obtain an asymptotically optimal power allocation, subcarrier pairing and relay selection. Moreover, we further design a suboptimal algorithm that sacrifices little on performance but could significantly reduce computational complexity. Numerical simulation results confirm the optimality of the proposed algorithms and demonstrate the impact of the different constraints.

Transient Characteristics and Physical Constraints of Grid-Tied Virtual Synchronous Machines

  • Yuan, Chang;Liu, Chang;Yang, Dan;Zhou, Ruibing;Tang, Niang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1111-1126
    • /
    • 2018
  • In modern power systems, distributed generators (DGs) result in high stress on system frequency stability. Apart from the intermittent nature of DGs, most DGs do not contribute inertia or damping to systems. As a result, a new control method referred to as a virtual synchronous machine (VSM) has been proposed, which brought new characteristics to inverters such as synchronous machines (SM). DGs employing an energy storage system (ESS) provide inertia and damping through VSM control. Meanwhile, energy storage presents some physical constraints in the VSM implementation level. In this paper, a VSM mathematical model is built and analyzed. The dynamic responses of the output active power are presented when a step change in the frequency occurs. The influences of the inertia constant, damping factor and operating point on the ESS volume margins are investigated. In addition, physical constraints are proposed based on these analyses. The proposed physical constraints are simulated using PSCAD/EMTDC software and tested through RTDS experiment. Both simulation and RTDS test results verify the analysis.

다자게임에서 발전력제약이 복합전략 내쉬균형에 미치는 영향 (Effect of Generation Capacity Constraints on a Mixed Strategy Nash Equilibrium in a Multi-Player Game)

  • 이광호
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.34-39
    • /
    • 2008
  • Nash Equilibrium(NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. Congestion on a transmission line makes it difficult to compute the NE due to causing a mixed strategy. In order to compute the NE of a multi-player game, some heuristics are proposed with concepts of a key player and power transfer distribution factor in other studies. However, generation capacity constraints are not considered and make it more difficult to compute the NE in the heuristics approach. This paper addresses an effect of generation capacity limits on the NE, and suggest a solution technique for the mixed strategy NE including generation capacity constraints as two heuristic rules. It is reported in this paper that a role of the key player who controls congestion in a NE can be transferred to other player depending on the generation capacity of the key player. The suggested heuristic rules are verified to compute the mixed strategy NE with a consideration of generation capacity constraints, and the effect of the generation constraints on the mixed strategy NE is analyzed in simulations of IEEE 30 bus systems.

A New Constraint Handling Method for Economic Dispatch

  • Li, Xueping;Xiao, Canwei;Lu, Zhigang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1099-1109
    • /
    • 2018
  • For practical consideration, economic dispatch (ED) problems in power system have non-smooth cost functions with equality and inequality constraints that makes the problems complex constrained nonlinear optimization problems. This paper proposes a new constraint handling method for equality and inequality constraints which is employed to solve ED problems, where the incremental rate is employed to enhance the modification process. In order to prove the applicability of the proposed method, the study cases are tested based on the classical particle swarm optimization (PSO) and differential evolution (DE) algorithm. The proposed method is evaluated for ED problems using six different test systems: 6-, 15-, 20-, 38-, 110- and 140-generators system. Simulation results show that it can always find the satisfactory solutions while satisfying the constraints.

Towards Achieving the Maximum Capacity in Large Mobile Wireless Networks under Delay Constraints

  • Lin, Xiaojun;Shroff, Ness B.
    • Journal of Communications and Networks
    • /
    • 제6권4호
    • /
    • pp.352-361
    • /
    • 2004
  • In this paper, we study how to achieve the maximum capacity under delay constraints for large mobile wireless networks. We develop a systematic methodology for studying this problem in the asymptotic region when the number of nodes n in the network is large. We first identify a number of key parameters for a large class of scheduling schemes, and investigate the inherent tradeoffs among the capacity, the delay, and these scheduling parameters. Based on these inherent tradeoffs, we are able to compute the upper bound on the maximum per-node capacity of a large mobile wireless network under given delay constraints. Further, in the process of proving the upper bound, we are able to identify the optimal values of the key scheduling parameters. Knowing these optimal values, we can then develop scheduling schemes that achieve the upper bound up to some logarithmic factor, which suggests that our upper bound is fairly tight. We have applied this methodology to both the i.i.d. mobility model and the random way-point mobility model. In both cases, our methodology allows us to develop new scheduling schemes that can achieve larger capacity than previous proposals under the same delay constraints. In particular, for the i.i.d. mobility model, our scheme can achieve (n-1/3/log3/2 n) per-node capacity with constant delay. This demonstrates that, under the i.i.d. mobility model, mobility increases the capacity even with constant delays. Our methodology can also be extended to incorporate additional scheduling constraints.

Improved Gauss Pseudospectral Method for UAV Trajectory Planning with Terminal Position Constraints

  • Qingquan Hu;Ping Liu;Jinfeng Yang
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.563-575
    • /
    • 2023
  • Trajectory planning is a key technology for unmanned aerial vehicles (UAVs) to achieve complex flight missions. In this paper, a terminal constraints conversion-based Gauss pseudospectral trajectory planning optimization method is proposed. Firstly, the UAV trajectory planning mathematical model is established with considering the boundary conditions and dynamic constraints of UAV. Then, a terminal constraint handling strategy is presented to tackle terminal constraints by introducing new penalty parameters so as to improve the performance index. Combined with Gauss-Legendre collocation discretization, the improved Gauss pseudospectral method is given in detail. Finally, simulation tests are carried out on a four-quadrotor UAV model with different terminal constraints to verify the performance of the proposed method. Test studies indicate that the proposed method performances well in handling complex terminal constraints and the improvements are efficient to obtain better performance indexes when compared with the traditional Gauss pseudospectral method.

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

Service Composition Based on Niching Particle Swarm Optimization in Service Overlay Networks

  • Liao, Jianxin;Liu, Yang;Wang, Jingyu;Zhu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1106-1127
    • /
    • 2012
  • Service oriented architecture (SOA) lends itself to model the application components to coarse-grained services in such a way that the composition of different services could be feasible. Service composition fulfills numerous service requirements by constructing composite applications with various services. As it is the case in many real-world applications, different users have diverse QoS demands issuing for composite applications. In this paper, we present a service composition framework for a typical service overlay network (SON) considering both multiple QoS constraints and load balancing factors. Moreover, a service selection algorithm based on niching technique and particle swarm optimization (PSO) is proposed for the service composition problem. It supports optimization problems with multiple constraints and objective functions, whether linear or nonlinear. Simulation results show that the proposed algorithm results in an acceptable level of efficiency regarding the service composition objective under different circumstances.

A new method for ship inner shell optimization based on parametric technique

  • Yu, Yan-Yun;Lin, Yan;Chen, Ming;Li, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.142-156
    • /
    • 2015
  • A new method for ship Inner Shell optimization, which is called Parametric Inner Shell Optimization Method (PISOM), is presented in this paper in order to improve both hull performance and design efficiency of transport ship. The foundation of PISOM is the parametric Inner Shell Plate (ISP) model, which is a fully-associative model driven by dimensions. A method to create parametric ISP model is proposed, including geometric primitives, geometric constraints, geometric constraint solving etc. The standard optimization procedure of ship ISP optimization based on parametric ISP model is put forward, and an efficient optimization approach for typical transport ship is developed based on this procedure. This approach takes the section area of ISP and the other dominant parameters as variables, while all the design requirements such as propeller immersion, fore bottom wave slap, bridge visibility, longitudinal strength etc, are made constraints. The optimization objective is maximum volume of cargo oil tanker/cargo hold, and the genetic algorithm is used to solve this optimization model. This method is applied to the optimization of a product oil tanker and a bulk carrier, and it is proved to be effective, highly efficient, and engineering practical.