• Title/Summary/Keyword: Kerosene engine

Search Result 193, Processing Time 0.023 seconds

Program Development for Solving the Energy Balance Problem of Liquid Rocket Engine (액체로켓 엔진 Energy Balance 문제 해결을 위한 프로그램 개발)

  • Park, Soon-Young;Nam, Chang-Ho;Cho, Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.135-138
    • /
    • 2006
  • We developed an engine system design program by balancing the pressure-mass-power relation which can be acquired from each component's specification. In gas generator type open-cycle rocket engine system it is possible to distinguish the variables into two categories, which are input variables and requirement variables. We define 11 design variables corresponding to the 11 balance equations as functions of pressure, mass and power of target engine system. We solved these equations by Newton method. As an example we designed gas generator cycle engine system and finally we could conclude that this developed program is well suited to the engine system design.

  • PDF

Ignition Characteristics According to Mixture ratio of Catalyst Ignitor using Green Propellant (친환경 추진제 점화기 설계 및 혼합비에 따른 점화 특성)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin;Jeon, Young-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.111-114
    • /
    • 2009
  • A catalyst ignitor of small thrust engine using hydrogen peroxide and kerosene was designed and fabricated, which confirmed mass flow rate for design pressure through the water cold-flow test in this study. In order to investigate ignition performance, it was changed that mixture ratio for kerosene mass flow rate in a position which heat of hydrogen peroxide decomposition comes to a steady state. And we confirmed stable ignition property in a wide range of mixture ratio.

  • PDF

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Program Development for the Mode Calculation of Gas-Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓 엔진의 모드 해석 프로그램 개발)

  • Park, Soon-Young;Cho, Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.366-370
    • /
    • 2008
  • Mode analysis is very important for the development of liquid rocket engine in various applications. We developed a mode analysis program for the gas-generator cycle liquid rocket engine by proposing 13 independent equations with 13 independent variables which can be solved by Newton method. As an example we calculated the change of engine operating mode according to the control valve's loss coefficient change located in the gas-generator oxidizer supply line. And we concluded that this program can give basic idea for the mode analysis of gas-generator cycle liquid rocket engine.

  • PDF

Development Status and Plan of the High Performance Upper Stage Engine for a GEO KSLV (정지궤도위성용 한국형 우주발사체를 위한 고성능 상단 엔진 개발 현황 및 계획)

  • Yu, Byungil;Lee, Kwang-Jin;Woo, Seongphil;Im, Ji-Hyuk;So, Younseok;Jeon, Junsu;Lee, Jungho;Seo, Daeban;Han, Yeoungmin;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • The technology development of a high performance upper stage engine for a GEO(GEostationary Orbit) KSLV(Korea Space Launch Vehicle) is undergoing in Korea Aerospace Research Institute. KSLV is composed of an open cycle engine with gas generator, which is for a low orbit launch vehicle. However the future GEO launch vehicle requires a high performance upper stage engine with a high specific impulse. The staged combustion cycle engine is necessary for this mission. In this paper, current progress and future plan for staged combustion cycle engine development is described.

Development of Liquid Propellant Rocket Engine for KSR-III (KSR-III 액체추진제 로켓 엔진 개발)

  • Choi Hwan-Seok;Seol Woo-Seok;Lee Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.75-86
    • /
    • 2004
  • KSR-III is the first Korean sounding rocket propelled by a liquid propellant propulsion system and it has been developed over 5 years using purely domestic technologies. The propulsion system of KSR-III is a 13-ton class see-level thrust liquid rocket engine(LRE) which utilizes liquid oxygen and kerosene for its propellants and employed pressurized propellant feeding and ablative cooling system. The problem of combustion instabilities which has brought the most difficulty in the development was resolved by implementation of a baffle. Through the development of KSR-III LRE, meaningful achievements have been made in the core technologies of LRE such as design of injectors and combustion chambers and test, evaluation, and control of combustion instabilities. The acquired technologies will be applied to the development of higher performance LREs necessary for future space development programs such as Korean Small Launch Vehicles(KSLV) In this paper, the development of KRE-III LRE system is described including its design, analyses. performance tests and evaluation.

Study on Cooling Characteristics of Mixed Gases with Hot Gas of Liquid Rocket Engine and Injected Liquid Nitrogen (액체로켓엔진의 연소가스와 액체질소 혼합에 의한 연소 가스 냉각 특성에 관한 연구)

  • Jeon, Jun-Su;Yu, I-Sang;Kim, Joong-Il;Kim, Jai-Ho;Ko, Young-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1001-1009
    • /
    • 2012
  • In this study, the cooling characteristics of combustion gas were investigated by injecting liquid nitrogen ($LN_2$) into a liquid rocket combustion chamber, which uses liquid oxygen (Lox) and kerosene as propellants. $LN_2$ injectors and an extended chamber for mixing were installed at the end of the ordinary LRE combustion chamber, and a nozzle was installed after the chamber for mixing. First, an ignition test of the liquid rocket engine was conducted to verify the stable combustion process. Next, a hot firing test was performed step-by-step for safety. Finally, the test was performed for 20 s. The results showed that the combustion gas of the LRE could be successfully cooled by using $LN_2$.

Effects of momentum ratio and mixture ratio on combustion efficiency in liquid rocket engine (액체로켓에서의 운동량비와 혼합비가 연소성능에 미치는 영향)

  • Han, J.S.;Kim, S.J.;Kim, S.G.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.38-43
    • /
    • 1999
  • An experimental study was carried out, in order to set up the procedure for evaluation of hot fire test, to investigate the effect of mixture on combustion performance and combustion stability , and to determine the optimum design condition for designing the liquid rocket engine. $HNO_3$/Kerosene uni-element liquid rocket engine(thrust 24 $\iota{b}_f$, chamber pressure 200 psia) using impinging streams doublet injector was designed, and ground hot-fire test was carried out. To prevent or reduce the hard start during ignition period, two step ignition method was used. This was accomplished by maintaining about 25% of the designed operating pressure doting transient period, then chamber pressure was built up to the designed operating pressure. Maximum combustion efficiency was at O/F ratio 3.6, and combustion efficiency is decreased with increasing momentum ratio.

  • PDF

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(II) - Gas Generator (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(II)-가스발생기)

  • Choi, Hwan-Seok;Seo, Seong-Hyeon;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1038-1047
    • /
    • 2009
  • The development process of a gas generator for a 30-tonf pump-fed space liquid rocket engine is described. Starting from the development of an injector, followed by subscale and full-scale test specimens, the development of LOx/kerosene fuel-rich gas generator has been concluded successfully. Various analytical methods have been utilized in the course of design and the performance requirements have been verified experimentally through ignition tests, combustion performance and stability assessment tests and duration tests. The gas generator has proven its workability and stability within a defined operation window of varying chamber pressure and mixture ratio and demonstrated compliance to the performance and life time requirements.

Transient Thermal Analysis on Wall Temperature Change of Rocket Engine Combustion Chamber Considering Film-Cooling (막냉각을 고려할 때 로켓엔진 연소실 벽면 온도변화에 대한 비정상 열해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-46
    • /
    • 2012
  • The calculation model for heat transfer analysis of rocket engine combustion chamber considering film-cooling has been established. Convective, radiative heat transfers and film-cooling effect in combustion chamber were evaluated using empirical equations especially for rocket engine combustors, and for heat transfer outward from chamber wall general convective and radiative equations were applied. Structural grid has been generated inside chamber wall for FVM calculations, and transient thermal analyses were carried out by time-marching techniques. LOx/kerosene rocket engine with chamber pressure of 50 bar has been analysed, and it is shown that, in that case, the film-cooling less than 4% remarkably contributes to reduce wall temperature, but the effect of the effect of film-cooling more than about 4% is not significantly increased.