• 제목/요약/키워드: Kernel-ART

검색결과 39건 처리시간 0.019초

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Using machine learning for anomaly detection on a system-on-chip under gamma radiation

  • Eduardo Weber Wachter ;Server Kasap ;Sefki Kolozali ;Xiaojun Zhai ;Shoaib Ehsan;Klaus D. McDonald-Maier
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.3985-3995
    • /
    • 2022
  • The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.

FPGA에서 에너지 효율이 높은 데이터 경로 구성을 위한 계층적 설계 방법 (A Model-based Methodology for Application Specific Energy Efficient Data path Design Using FPGAs)

  • 장주욱;이미숙;;최선일
    • 정보처리학회논문지A
    • /
    • 제12A권5호
    • /
    • pp.451-460
    • /
    • 2005
  • 본 논문은 ffGA상에서 에너지 효율이 높은 데이터 경로 설계 방법론을 제안한다. 에너지, 처리시간, 그리고 면적간의 트레이드오프를 이해하기 위하여, 도메인 특성 모델링, coarse-grained 성능평가, 설계공간 조사, 그리고 로우-레벨 시뮬레이션 과정들을 통합한다. 도메인 특성 모델링 기술은 도메인의 특성에 따른 시스템 전체의 에너지 모에 영향을 미치는 여러 가지 구성요소와 파라미터들을 식별함으로써 하이-레벨 모델을 명시한다. 도메인이란 주어진 어플리케이션 커널의 알고리즘에 대응하는 아키텍쳐 패밀리이다. 하이-레벨 모델 또한 에너지, 처리시간 그리고 면적을 예측하는 함수들로 구성되어 트레이드오프 분석을 용이하게 한다. 설계 공간 조사(DSE)는 도메인에 명시된 설계 공간을 분석하여 설계 셋을 선택하도록 한다. 로우-레벨 시뮬레이션은 설계 공간 조사(DSE)에 의해 선택된 설계와 최종 선택된 설계의 정확한 성능평가를 위하여 사용된다. 본 논문에서 제안한 설계 방법은 매트릭스 곱셈에 대응하는 알고리즘과 아키텍쳐 패밀리를 사용한다. 제안된 방법에 의해 검증된 설계는 에너지, 처리시간과 면적간의 트레이드오프를 보인다. 제안된 설계 방법의 효율성을 보이기 위하여 Xilinx에서 제공되는 매트릭스 곱셈 커널과 비교하였다. 성능 비교 메트릭으로 평균 전력 밀도(E/AT)와 에너지 대 (면적 x 처리시간)비를 사용하였다. 다양한 문제의 크기에 대하여 Xilinx설계들과 비교하였을 때 제안한 설계 방법이 전력밀도(E/AT)에서 평균 $25\%$우수하였다. 또한 본 논문에 제안한 설계의 방법을 MILAN 프레임워크를 이용하여 구현하였다.

인공신경망 기반 저지연 피아노 채보 모델 (Reducing latency of neural automatic piano transcription models)

  • 이다솔;정다샘
    • 한국음향학회지
    • /
    • 제42권2호
    • /
    • pp.102-111
    • /
    • 2023
  • 자동 음악 채보는 주어진 오디오에서 음표 정보를 추출하는 태스크로, 이 연구에서는 피아노 음악의 자동음악 채보 모델에서 지연 시간을 줄이는 방법을 소개한다. 신경망 기반 채보 모델이 피아노 채보에도 적용되어 높은 정확도를 기록하였고 이를 이용한 실시간 구현도 소개된 바 있지만, 채보를 위한 지연 시간이 길어 인터랙티브 시나리오에서 활용하기에 한계가 있었다. 이 문제를 해결하기 위해 본 연구는 Fast Fourier Transformation(FFT)에서 윈도우 크기와 홉 크기를 줄이거나 합성곱 레이어의 커널 크기를 수정하고 시간 축에서 레이블을 이동하여 모델이 시작을 더 일찍 예측하도록 훈련하는 등 피아노 전사를 위한 신경망의 내재적 지연 시간을 줄이는 몇 가지 기술을 제안한다. 실험 결과, 이러한 접근 방식을 결합하면 높은 전사 정확도를 유지하면서 지연 시간을 줄일 수 있음을 알 수 있었다. 기존 모델은 160 ms의 지연 시간을 가지고 음표 F1 점수는 93.43 %였으나 제안한 방법을 적용하면 96 ms와 64 ms의 지연 시간 동안 각각 92.67 %와 90.51 %의 F1 점수를 달성할 수 있었다. 이러한 결과는 향후 피아노 교육을 위한 실시간 피드백 제공 등 다양한 인터랙티브 시나리오를 위한 자동 채보 모델에 활용될 수 있을 것이다.

관광 콘텐츠 개발을 위한 도시 브랜드화 (Brand Imaging a City for Tourism)

  • 임성택
    • 한국콘텐츠학회논문지
    • /
    • 제8권3호
    • /
    • pp.127-137
    • /
    • 2008
  • 도시의 브랜드화의 주요 목적은 도시민의 자긍심을 높이고 도시의 이미지 개선을 통해 도시의 가치를 높이고자 함에 있다. 현대사회가 적극적이고 능동적인 자세를 모든 분야에서 요구하는 만큼, 도시도 인간의 집단 거주지 역할에 만족하지 않고 21세기의 생존과 번영을 위한 변화를 시도해야 한다. 이러한 브랜드화는 정치, 경제, 사회, 문화, 예술 등에 걸쳐 폭넓게 나타나는 것이 사실이지만 브랜드화를 통한 관광 효과와 경제적 이윤 창출이 무엇보다 중요하게 다루어지고 있다. 관광 적자가 해마다 늘어나는 우리의 실정에서 보면 이러한 브랜드화는 더욱 절실한 것이라 생각되어진다. 하나의 도시의 설립에는 오랜 시간과 수많은 역사적 사건이라는 구성요소가 필요하다. 오랜 기간에 걸쳐 일관된 방향과 의미를 지속적으로 부여할 수 있다는 것은 불가능할지도 모르지만, 결국 관광콘텐츠 개발의 핵심은 이러한 일관된 방향과 의미를 중심으로 아이디어와 발전이 집결되느냐에 관한 것이다. 이러한 문제점 해결을 위해서, 외국의 도시 브랜드화 사례분석을 통해 우리 도시의 브랜드 전략과 방향의 문제점을 살펴보고 이를 바탕으로 국제적 관광 도시로 거듭 날 수 있는 기반을 조성하고자 하였다. 향후 지속적인 관리를 바탕으로 도시 브랜드화가 진행된 후 강력한 이미지 파워를 동반한 도시의 탄생이 필요하다.

다중 클래스 SVM기반의 침입탐지 시스템 (Intrusion Detection System Based on Multi-Class SVM)

  • 이한성;송지영;김은영;이철호;박대희
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.282-288
    • /
    • 2005
  • 본 논문에서는 기존의 침입탐지 모델인 오용탐지 모델과 비정상 탐지 모델의 장점은 유지하되 단점은 보완하는 견지에서 새로운 침입탐지 모델을 제안한다. MMIDS로 명명된 새로운 침입탐지시스템은 다음의 평가 기준들을 모두 만족하는 차원에서 설계되었다: 1) 시스템에서 학습되지 않은 새로운 공격 유형의 신속한 발견; 2) 탐지된 공격 유형에 대한 세부적 정보의 제공; 3) 빠르고 효율적인 학습 및 갱신으로 인한 경제적인 시스템의 유지/보수; 4) 시스템의 점증성(incrementality) 및 확장성. MMIDS의 핵심 구성요소로 새롭게 제안된 다중 클래스 SVM은 빠르고 효율적인 학습 및 갱신이 가능하여 침입탐지 시스템의 유지보수 비용을 절감할 수 있다. 실험을 통해 유사한 공격 패턴에 대한 분류성능 및 각 공격 유형별 세분화 능력이 우수함을 보인다.

BPFast: 클라우드 환경을 위한 eBPF/XDP 기반 고속 네트워크 패킷 페이로드 검사 시스템 (BPFast: An eBPF/XDP-Based High-Performance Packet Payload Inspection System for Cloud Environments)

  • 유명성;김진우;신승원;박태준
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.213-225
    • /
    • 2022
  • 컨테이너 기술은 클라우드 환경에서 마이크로서비스의 효율적인 구축 및 운영을 가능하게 했지만, 심각한 보안 위협도 함께 가져왔다. 다수의 컨테이너가 서비스 구성을 위해 네트워크로 연결되기 때문에 공격자는 탈취한 컨테이너에서 네트워크 공격을 수행해 인접한 다른 컨테이너를 공격할 수 있다. 이러한 위협을 막기 위해 다양한 컨테이너 네트워크 보안 솔루션이 제안되었으나 성능적인 측면에서 많은 한계점을 갖고 있다. 특히 이들은 컨테이너 네트워크 보안에 필수적인 패킷 페이로드 검사 과정에서 매우 큰 네트워크 성능 저하를 일으킨다. 본 논문에서는 이러한 문제를 해결하기 위해 클라우드 환경을 위한 eBPF/XDP 기반 고속 패킷 페이로드 검사 시스템인 BPFast를 제안한다. BPFast는 별도의 유저 수준 컴포넌트 없이 커널 영역에서 컨테이너가 전송한 패킷의 헤더와 페이로드를 검사하여 컨테이너를 네트워크 공격에서부터 보호한다. 본 논문에서는 Kubernetes 환경에서 진행한 실험을 통해 BPFast 프로토타입이 Cilium, Istio 등 최신 솔루션보다 최대 7배 더 빠르게 동작할 수 있음을 증명했다.

GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법 (Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU)

  • 김민철;이광엽
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권10호
    • /
    • pp.935-943
    • /
    • 2017
  • 많은 양의 데이터 기반으로 학습하는 neural network 중 이미지 분류나 음성 인식 등에 사용되어 지고 있는 CNN(Convolution neural network)는 현재까지도 우수한 성능을 가진 구조로 계속적으로 발전되고 있다. 제한된 자원을 가진 임베디드 시스템에서 활용하기에는 많은 어려움이 있다. 그래서 미리 학습된 가중치를 사용하지만 여전히 한계점이 있기 때문에 이를 해결하기 위해 GPU의 범용 연산을 위해서 사용하는 GP-GPU(General-Purpose computing on Graphics Processing Units)를 활용하는 추세다. CNN은 단순하고 반복적인 연산을 수행하기 때문에 SIMT(Single Instruction Multiple Thread)기반의 GPGPU에서 스레드 할당과 활용 방법에 따라 연산 속도가 많이 달라진다. 스레드로 Convolution 연산과 Pooling 연산을 수행할 때 쉬어야 하는 스레드가 발생하는 데 이러한 문제를 해결하기 위해 남은 스레드가 다음 피쳐맵과 커널 계산에 활용되는 방법을 사용함으로써 연산 속도를 증가시켰다.