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In most spectral clustering approaches, the Gaussian 
kernel-based similarity measure is used to construct the 
affinity matrix. However, such a similarity measure does 
not work well on a dataset with a nonlinear and elongated 
structure. In this paper, we present a new similarity 
measure to deal with the nonlinearity issue. The 
maximum flow between data points is computed as the 
new similarity, which can satisfy the requirement for 
similarity in the clustering method. Additionally, the new 
similarity carries the global and local relations between 
data. We apply it to spectral clustering and compare the 
proposed similarity measure with other state-of-the-art 
methods on both synthetic and real-world data. The 
experiment results show the superiority of the new 
similarity: 1) The max-flow-based similarity measure can 
significantly improve the performance of spectral 
clustering; 2) It is robust and not sensitive to the 
parameters. 
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I. Introduction 

Spectral clustering has attracted a significant amount of 
attention [1]-[4] due to its impressive performance on some 
challenging clustering datasets, with successful applications in 
computer vision [5], [6], VLSI design [7], and speech 
processing [8], [9]. It has been shown that the affinity matrix is 
crucial to the performance of spectral clustering [10]-[16]. 
Most spectral clustering methods adopted the Gaussian kernel 
function as a similarity measure to construct the affinity matrix 
[5], [11]-[13], where only the parameters are different. In [11], 
a fixed scaling parameter controls how fast the similarity falls 
off with the distance between points. In [12], a self-tuning 
parameter was used to adapt to the multiscale dataset. In [13], 
the Gaussian kernel function was scaled according to the local 
density between data points so that the similarity between two 
points is higher if there are more common points in their ε-
neighborhood.  

Though the Gaussian kernel-based similarity measure can 
describe the information of the local consistency, it does not 
work well on a dataset with a nonlinear elongated structure. 
See the example in Fig. 1(a), which reflects three spiral clusters. 
The grayscale of lines indicates the similarity between the 
points. The darker the line is, the larger the similarity is. One 
can easily find cases in Fig. 1(a) wherein the similarity between 
the points in the same manifold is smaller than that for a 
different manifold. This phenomenon results in unsatisfactory 
performance for spectral clustering algorithms.  

To overcome the difficulty mentioned above, Fischer and 
Buhmann [17], [18] proposed a path-based similarity measure 
based on a connectedness criterion, which considers two 
objects as similar if there exists a mediating intra cluster path 
without any large-cost edge. Though the path-based measure 
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can partly overcome the difficulty with nonlinearity, it is 
sensitive to noise. In [14], a robust path-based similarity 
measure based on M-estimator was proposed to improve the 
robustness of the path-based spectral clustering. It was reported 
that the robust path-based measure performs well on some 
datasets; however, the measure favors taking the data points 
around the clusters as noise, as shown in [14].  

In this paper, we propose a max-flow-based similarity 
measure for constructing the affinity matrix, originating from 
the fact that data points in the same cluster are more connected 
than data points in different clusters, as shown in Fig. 1(a). The 
maximum flow between data points is computed as the new 
similarity, in which a weighted graph is constructed by using 
the technique of k-nearest neighbor (k-NN), ε-neighborhood, or 
a combination of both. As opposed to the path-based similarity 
measure, the maximum flow takes all paths between two 
points into account, not just the shortest one. Thus, the 
proposed measure reflects the global similarity between two 
points through all paths: the maximum flow (similarity) is 
larger when there are more paths or shorter paths connecting 
the two points. The commute time distance (resistance 
distance) and its variants based on the random walk (electronic 
network) have been proposed to carry out a similar idea and 
have been widely used [19]-[21]; however, we will show that 
the max-flow-based similarity measure can improve the 
performance of the spectral clustering algorithm on most 
datasets in our experiments.  

The rest of this paper is organized as follows. The 
background of spectral clustering is reviewed in section II. In 
section III, we propose a max-flow-based similarity measure 
and apply it to construct the affinity matrix in detail. 
Experiment results on some datasets are presented in section IV, 
and some concluding remarks are given in section V.  

II. Background on Spectral Clustering 

1. Ng-Jordan-Weiss Algorithm  

Most spectral clustering algorithms follow the spirit of the 
Ng-Jordan-Weiss (NJW) algorithm [11]. For completeness, the 
NJW algorithm is briefly reviewed here. 

Given a dataset { }1, , nS x x=  in ,lℜ the NJW 
algorithm is implemented as follows. 1) Construct an affinity 
matrix A by the Gaussian kernel function in (1): 
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where δ is a scale parameter to control how fast the similarity 
changes with the distance between the data points xi and xj. 2) 

Compute the normalized affinity matrix L=D-1/2A D-1/2, where 
D is the diagonal matrix with

1
.

n
ii ijj=

=∑D A  3) Compute 
the K eigenvectors of L, v1, v2,…, vk, which are associated with 
the K largest eigenvalues, and form the matrix 

][ 21 KvvvX = . 4) Renormalize each row to form a new 
matrix KnY ×ℜ∈ with 2 1/2( ) ,ij ij ijj

= ∑Y X X  so that each 
row of Y has a unit length. 5) Treat each row of Y as a point in 

Kℜ and partition the n points (n rows) into K clusters via a 
general cluster algorithm, such as k-means algorithm. 6) 
Assign the original point xi to the cluster c if and only if the 
corresponding row i of the matrix Y is assigned to the cluster c. 

2. Similarity Graph 

A weighted graph G=(V, E) is a convenient tool for 
describing the similarity between data points, where V is the 
dataset {x1, x2,…, xn} and the weight for the edge between    
xi and xj is the similarity. The adjacency matrix of the graph is 
the affinity matrix described in subsection II.1. The Gaussian 
kernel similarity in (1) results in a fully connected graph.  

There are other approaches to construct the graph, including 
the k-NN and ε-neighborhood. In the k-NN graph, one vertex is 
only connected to its k-NNs, that is, the weight is computed as 
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where sij is the similarity between xi and xj. 
In the ε-neighborhood graph, the points whose pairwise 

distances (similarity) are smaller (larger) than ε are connected, 
defined as 
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The k-NN or ε-neighborhood technique produces a sparse 
graph, which can help our method to reduce the computation 
and improve the performance. Generally, the k-NN-based 
graph is recommended as the first choice [15].  

III. Max-Flow-Based Similarity Measure 

Gaussian kernel function is widely used as the similarity 
measure for its ability to reflect the homogeneity of 
compactness. However, it fails on a dataset with an elongated 
structure, as shown Fig. 1(a). The two points existing on the 
same manifold should be homogeneous, that is, their similarity 
is high even if with a large Euclidean distance. Such a fact 
motivates us to seek a new similarity measure. 

It was observed in [22] that the density of points in each 
cluster is considerably higher than that within the area 
separating the clusters. Figure 1(b) shows the sparse graph,  
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Fig. 1. Example for max-flow-based similarity measure. (a) 
Three spiral clusters with noises. Grayscale of lines
denotes Gaussian kernel-based similarity. Darker the line
is, larger the similarity is. (b) Sparse similarity graph by 
ε-neighborhood technique with ε=0.02. (c) Similarity 
based on max-flow. (d) Affinity matrix constructed with 
max-flow-based similarity measure. (e) Affinity matrix
constructed with Gaussian kernel function as in (1). 

(a) (b) 

(c)

(d) (e) 

 
 
constructed by the ε-neighborhood technique with ε=0.02. Points 
belonging to the same cluster are linked densely by more edges 
with larger weight, while the points belonging to different 
clusters are linked sparsely by fewer edges with smaller weight 
in noise area. Based on this observation, we propose to use the 
maximum flow between data points as the similarity measure, 
which is described in detail in the next subsection.  

As an example, Fig. 1(c) shows the similarity between points 
using max-flow, which gives a good measure result. 

1. Computation of s-t Max-Flow as Similarity Measure 

For a weighted similarity graph G=(V, E), the weight of the 
edge connecting vi and vj is a positive real number known as 
the capacity of the edge, denoted by cij. It represents the 
maximum amount of flow that can pass through an edge. A 
feasible flow from a vertex s (source) to a vertex t (sink) is a set 
of numbers {fij} associated with the edges. Each element of 
{fij} satisfies the following conditions: 1) 0 ij ijf c≤ ≤ and 2)  

0
ik kj

ik kj
e E e E

f f
∈ ∈

− =∑ ∑ for each vertex \{ , }.kv V s t∈ The 

value of the flow from s to t, Fst, is defined as follows: 
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∈ ∈
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The max-flow problem is to find the maximum Fst, which is 
related to the minimum cut. The Ford and Fulkerson theorem 
[23] reveals their relations: the maximum flow from the vertex 
s to the vertex t is equal to the value of the minimum cut 
separating s and t. There exist a few clustering algorithms 
based on the concept of “cut” [5], [24].  

By regarding the edges on the graph as channels of 
communication, the flow on every edge can be considered as 
the amount of information passed through the edge, with the 
vertex s as the information source and the vertex t as the 
information receiver. The maximum flow from the vertex s to 
the vertex t reflects the maximum amount of information 
passing through all paths between the vertices s and t, not only 
through one path (for example, the shortest path). This way, the 
maximum flow carries the “global relations” between vertex s 
and t, and the resulting similarity is consequently more 
effective than similarity based only on “local relations.” 

There exist several algorithms for calculating the maximum 
flow between two points, and an experimental comparison of 
min-cut/max-flow algorithms is provided in [24]. However, 
one can easily encounter the degenerate cases in the process of 
computing maximum flow, wherein the minimum cut favors 
cutting the isolated s or t from the others in the graph.  

To overcome the degeneracy difficulty, a modified 
maximum flow from s to t is computed. The weights of the 
edges connecting s (and t) with its neighbors are set as a large-
enough constant (for example, the sum of the weights of all 
edges in our experiments) if s and t have no common 
neighbors and compute the maximum flow from s to t in the 
modified graph. Thus, the degenerate case will not occur. In 
computing modified maximum flow, all vertices in the graph 
are divided into two sets: one set contains all vertices that 
connect to the vertex s directly or by one intermediate vertex, 
denoted by V1, and the other set V2 contains the vertices not in 
V1 (V1∪V2 =V and V1∩V2 =Φ). Then, the similarity among the 
vertices in the two sets is computed in different ways, 
respectively. The algorithm of computing the similarity 
between two vertices in a graph is described as follows. 

Algorithm 1: 
Input: a weighted graph G=(V, E) and vertex s.  
Output: the similarity matrix between s and t.  
Method: 
1) Divide the vertices in the graph into two sets: V1 and V2, as 

described above. 
2) For each vertex t in the V2, construct the modified graph in 

which the weights of the edges connecting s (and t) with its 
neighbors are set as a large-enough value and calculate s-t 
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maximum flow Fst on the modified graph by the algorithm [24]. 
Set the similarity between s and t as the s-t maximum flow 
between s and t: Sst=Fst. 

3) For each vertex t in the V1, the similarity between s and t is 
set as )(max

2
sk

Vk
F

∈
. 

2. Construction of Affinity Matrix with Max-Flow-Based 
Similarity Measure 

In this subsection, we present the implementation of 
constructing the affinity matrix by the max-flow-based 
similarity measure in detail. Given a dataset with n points 
denoted by 1 2{ , , , }nD x x x= , the affinity matrix is 
constructed by the following steps. 

1) Construct the weighted graph G by local similarity.  
We first compute the pair similarity with a general similarity 

measure, such as the Gaussian kernel function. To avoid 
confusion, this similarity is referred to as the local similarity. 
There are various similarity measures for two data points. We 
adopt the self-tuning Gaussian kernel method [12] due to its 
ability to deal with multiscale data. The local similarity sij 

between xi and xj is computed as follows: 
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where δi is the local scale parameter corresponding to xi. 
Specifically, the δi in our method is computed as described in 
[12]: δi=d(si, sM), where sM is the M-th closest neighbor of the 
point si. 

Then, a similarity graph G=(V, E) is constructed as described 
in subsection II.2, which can be a k-NN graph or an ε-
neighborhood graph. In this graph, every vertex corresponds to 
a point in the D and each edge is weighted by the local 
similarity (4) between the connected points. 

2) Construct the new similarity graph by the max-flow-based 
similarity measure. 

For each point, pair xi and xj, compute the similarity between 
xi and xj by Algorithm 1, denoting Fij. Then, construct the new 
similarity graph ( , )G V E′ ′ ′= , where the edge connecting vi 
and vj in G′  is weighted by Fij. 

The new affinity matrix A' is defined on the new similarity 
graph G′ as follows: 
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0                                   ,

ij ji
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A          (5) 

Since the maximum value of the elements in A' is often 
larger than 1, A' can be normalized into the range from 0 to 1. 
Figures 1(d) and 1(e) show the affinity matrices constructed 
with the proposed similarity measure and Gaussian kernel 

function-based similarity measure, respectively. Compared 
with the Gaussian function-based similarity measure, the 
similarity for long-distance pairs in the same cluster (manifold) 
is not negligible in the proposed measure, which helps to 
constructs the block-diagonal matrix. According to the 
theoretical results using the matrix perturbation theory [11], 
spectral clustering can produce satisfactory results when the 
matrix is block-diagonal. As mentioned in [16], although the 
band-diagonal matrix constructed by the Gaussian function 
obtains a desirable result in spectral clustering, it depends on 
the parameter δ. It is difficult to select an appropriate parameter 
to construct a good band-diagonal matrix. We will illustrate in 
subsection IV.6 that the matrix by the proposed method is less 
sensitive to the parameter than the one by the Gaussian kernel 
function. 

IV. Experiments 

To evaluate the effectiveness of the max-flow-based 
similarity measure, which we will hereafter refer to as FLOW, 
we conduct experiments on synthetic and real datasets 
including a comparison with other state-of-the-art similarity 
measures for the affinity graph, including the locally scaled 
Gaussian kernel function (TUNING) [12], the path-based 
similarity (PATH) [14], the ranking on manifolds (ROM) [10], 
and the amplified commute kernel (ACK) [20]. The affinity 
graphs constructed by different measures are used in the 
spectral clustering algorithm [11] to evaluate the effectiveness. 

In this section, we adopt the normalized mutual information 
(NMI) as the performance metric, which is widely employed to 
evaluate the clustering result [13], [25]. Supposing X and Y 
denote two random variables, the NMI is defined as 

          )()(
),(),(NMI
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YXYX
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I
= ,          (6)

 
where I(X, Y) is the mutual information between X and Y, and 
H(X) is the entropy of X. When evaluating the performance of 
clustering algorithms, the NMI is computed by regarding the 
clustering result and true class label as two random variables. 
Specifically, given a dataset with n points, the true classes and 
clustered classes are represented by },,,{ 21

l
k
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kC C C ′ , where k and k' denote the number of true 
classes and the number of clustered classes, respectively. The 
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where l
in and h

jn denote the number of points in l
iC  and 

h
jC , and ijn denotes the number of points belonging to l

iC  
and h

jC . The range of NMI is from 0 to 1, and, the larger the 
NMI, the better the clustering result. 

In the following experiments, the parameters of TUNING, 
PATH, ROM, and ACK are set as suggested in their related 
papers. As for FLOW, we discuss the sensitivity of parameters 
in subsection IV.6. Since the computations of PATH, ROM, 
ACK, and FLOW are all based on a weighted graph, for a fair 
comparison, identically weighted graphs are used in the four 
methods. Thus, the sigmas in PATH, ROM, and ACK are the 
same as in FLOW. Additionally, the parameter (α) in ROM is 
set to 0.99, as in [5]. The parameter for defining the 
neighborhoods in PATH is selected so that the neighborhood is 
just large enough to include at least two neighbors in each 
neighborhood [14]. As for TUNING, the only hyper-parameter 
M is set to 7, as suggested in [12]. As in the literature [10], [11], 
[13], [14], the number of clusters is an input of the spectral 
clustering algorithm.  

1. Synthetic Dataset 

To illustrate the efficacy of the proposed method, the three 
synthetic datasets shown in Figs. 2(a) through 2(c) are used in 
the experiments. The three datasets, two-circle, three-spiral, and 
circle-Gaussian, were used in previous work to evaluate the 
performance of spectral clustering [11], [13], [14]. 

The first two datasets are well clustered by all five methods, 
with a result as that in Figs. 2(a) and 2(b), so that the result of 
five methods is omitted. The circle-Gaussian dataset contains 
two clusters with Gaussian distribution and one cluster with a 
circle shape. Unlike the first two datasets, the circle-Gaussian 
dataset is not well separated because the points around the 
Gaussian clusters tend to connect the three clusters. The results 
on the circle-Gaussian dataset are shown in Fig. 2(c). The 
PATH and FLOW can separate the three clusters well, and 
fewer points are incorrectly clustered by FLOW than PATH. 
However, the other methods fail to find correct clusters on the 
circle-Gaussian dataset. As shown in the results, though 
TUNING separates the data with Gaussian distribution, it 
cannot help spectral clustering algorithms to find the circle 
cluster with an elongated structure. The ACK and ROM can 
find the elongated structure to a certain extent, with some data 
clustered incorrectly. The similarity measures with global 
information (PATH, ROM, ACK, and FLOW) are more 
beneficial to cluster data with a nonlinear elongated structure 
than the Gaussian kernel-based similarity measure (TUNING). 
It is also seen that the proposed measure, FLOW, can better 
help spectral clustering to find elongated structure and is 
insensitive to noise. 

 

Fig. 2. Three synthetic datasets and some results on this data: (a) 
two-circle; (b) three-spiral; (c) circle-Gaussian; (d) 
TUNING, NMI=0.43; (e) PATH, NMI=0.88; (f) ROM, 
NMI=0.68 ; (g) ACK, NMI=0.64; and (h) FLOW, 
NMI=0.98. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

 
 

Table 1. Five datasets from UCI. 

Dataset Iris Wine WDBC-1 WDBC-1 Yeast 
Number of 
instances 150 178 569 699 1,484 

Number of 
features 4 13 30 9 8 

Number of 
clusters 3 3 2 2 10 

  
2. UCI Dataset 

In this subsection, we conduct the experiments on the five  
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Fig. 3. Clustering results on five UCI datasets. 
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UCI datasets that have been on the most-downloaded list since 
20071). The characteristics of the datasets are shown in Table 1. 
As a preprocessing step, the mean of each dimensionality is 
normalized to zero. The experiment results on the UCI datasets 
are shown in Fig. 3. In terms of the NMI criteria, the proposed 
method, FLOW, outperforms the others on four datasets: Iris, 
Wine, WDBC-1, and WDBC-2. On Yeast, FLOW is the 
second best, inferior to PATH. 

3. MNIST Dataset 

The MNIST dataset of handwritten digits2) contains 10 digits 
with a total of 70,000 examples (Fig. 4). Every example is a 
28×28 grayscale image, and the dimensionality is thus 784. To 
obtain a comparable result, in our experiments, the first 200 
examples from each digit are used instead of randomly 
sampling 200 samples, as described in [14].  

Each pair of the digits is used for clustering, with a total of 45 
tests. Figure 5 summarizes the results. In most cases, the 
proposed method outperforms other methods. Specifically, 
TUNING, PATH, ROM, ACK, and FLOW achieve the best 
result in 0, 5, 5, 9, and 26 cases, respectively. The mean value 
and standard deviation of NMIs of different methods on the 45 
tests are shown in Table 2. The proposed method obtains the 
maximum mean value and the minimum standard deviation of 
NMIs, showing that the proposed method has the best 
performance and is robust for most data. To estimate the 
robustness of all methods, the parameters of each method are 
fixed in all experiments.  

Additionally, to evaluate the performance of our proposed 
method on the data with more clusters, we also select 200 
                                                               

1) The UCI datasets are available at http://archive.ics.uci.edu/ml/. Please note that we only 
consider datasets that do not have any categorical features. 

2) The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/. 

 

Fig. 4. Some examples from MNIST dataset.  
 
images from each digit to form one subset with a total of 2,000 
examples, which contains 10 classes and is denoted by Ten-
Class-Digits. The results of the five methods on the subset are 
shown in Fig. 6. The result of our method is still better than the 
others.  

4. UMIST and Yale Face Datasets  

The UMIST face database [26] consists of 564 grayscale 
images from 20 subjects. The number of images per subject 
varies from 19 to 36, and the images of each subject contain a 
range of poses from the left profile to right profile. The size of 
each image is 220×220. The Yale faces dataset [27] consists of 
165 grayscale images from 15 individuals, in which there are 
11 images per subject and each image is different in facial 
expression or configuration. In our experiments, we down-
sample each image to 20×20 pixels and represent it as a vector 
in R400. The set of the images per subject is taken as a cluster in 
the cluster experiments. The results on two face datasets are 
given in Fig. 6. Although the overall result of FLOW is not the 
best, compared with the other methods, FLOW still achieves 
good results in two cluster tasks. 

5. Comparison of Affinity Matrices 

To illustrate intuitively the merit of our proposed method for 
spectral clustering, we compare the affinity matrices 
constructed by different similarity measure. As described in the 
NJW algorithm, the result of the spectral clustering is obtained 
from the K largest eigenvectors. So, through the K largest 
eigenvectors, we can assess the clustering ability of one affinity 
matrix. Taking the digit pair {7, 9}, for example, the affinity 
matrices constructed by TUNING, ACK, and FLOW and the 
corresponding largest eigenvectors are shown in Fig. 7. The 
three leading principal components of the digit pair indicate 
that the two digits are not distributed with the compact shape 
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Fig. 5. Result of 45 tests on all pairs of 10 digits. 
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Table 2. Mean and standard deviation of NMIs of different
spectral clustering methods on 45 tests. 

 TUNING PATH ROM ACK FLOW

Mean 0.68 0.63 0.78 0.82 0.87 
Standard 
deviation 0.2593 0.269 0.21 0.193 0.163 

 

 

Fig. 6. Result on Ten-Class-Digits, UMIST face dataset and Yale
face dataset. 
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and are not separated well, as shown in Fig. 7(a). In the affinity 
matrix by FLOW, there are less pairs from different digits with 
significant similarity than the ones by TUNING and ACK. 
Regarding perturbation [11], it means that there is a smaller 
perturbation to the ideal affinity matrix, which is helpful for the 
spectral algorithm. Through their two largest eigenvectors, we 
can see that the eigenvectors of the matrix constructed by 
TUNING have little information for distinguishing the two 
kinds of digits; however, the ones by the proposed method can 
separate the two digits well. The ACK method attains better 
ability than TUNING but less than ours. The results of 
TUNING, ACK, and FLOW on the digit pair are 0.03, 0.38, 
and 0.82, respectively. The results show that FLOW can 
significantly help the spectral clustering to improve the ability 
to cluster the data with a complex shape. 

6. Sensitivity Analysis of Parameters 

There are two parameters to set in the proposed similarity 
measure: the local parameters δi in (4) and K for constructing 
the k-NN graph in (2). For the parameter δi, we compare the 
proposed method with the self-tuning spectral clustering, 
wherein a similar local scale parameter δi is used. The 
parameter δi is actually computed as its distance to the M-th 
neighbor. Therefore, we investigate how the parameter M  
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Fig. 7. Affinity matrices constructed by TUNING, ACK, and
FLOW and the corresponding largest eigenvectors. (a)
Three leading principal components of the digit pair. (b),
(c), (d) Affinity matrices by TUNING, ACK, and FLOW,
respectively. (e), (f), (g) Two largest eigenvectors
corresponding to (b), (c), and (d). 
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Fig. 8. Curves of NMI with varying M for parameter δi on digit 
set (“8” and “9”). 
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Fig. 9. Curves of NMI with varying K for t k-NN graph. 
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affects the performance of the spectral clustering algorithm by 
FLOW and TUNING, particularly on the digits “8” and “9.” 
Figure 8 shows the change of the NMIs of two methods with 
M varying from 3 to 30. The FLOW achieves a stable desirable 
result in a large scope of M, while TUNING only achieves 
such in a small range. The result indicates that FLOW is much 
more robust to the parameter δi than TUNING.  

We also conduct experiments to evaluate the impact of K in 
(2). Figure 9 shows the NMI of FLOW when varying K on the 
digit pairs {0, 6}, {5, 6}, and {8, 9}, showing that the proposed 
method is not sensitive to the parameter of K in (2).  

In the above experiments, the parameters M and K are 
simply set as 20 and 10, respectively, for digit and face 
experiments and set as 30 and 20, respectively, for others. 

V. Conclusion 

In this paper, we proposed a new similarity measure based 
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on the maximum flow between data points. Unlike other 
similarity measures based on the Gaussian kernel function, the 
new similarity measure can effectively reflect the global 
relationship between points and meanwhile satisfy the local 
consistency requirement. It can work on nonlinear and 
elongated structures and is robust to noise, as can be seen from 
the experiments on the synthetic and real datasets. It 
outperformed state-of-the-art similarity measure methods for 
spectral clustering on most datasets in our experiments. 
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