
I. Introduction

Automatic Music Transcription (AMT) is a task that 

detects and recognizes musical notes events within a given 

audio recording. While AMT can be applied to a wide 

range of musical instruments and genres, the piano has 

emerged as one of the most extensively researched 

instruments in this field. One of the primary reasons for the 
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ABSTRACT: Automatic Music Transcription (AMT) is a task that detects and recognizes musical note events 

from a given audio recording. In this paper, we focus on reducing the latency of real-time AMT systems on piano 

music. Although neural AMT models have been adapted for real-time piano transcription, they suffer from high 

latency, which hinders their usefulness in interactive scenarios. To tackle this issue, we explore several techniques 

for reducing the intrinsic latency of a neural network for piano transcription, including reducing window and hop 

sizes of Fast Fourier Transformation (FFT), modifying convolutional layer’s kernel size, and shifting the label in 

the time-axis to train the model to predict onset earlier. Our experiments demonstrate that combining these 

approaches can lower latency while maintaining high transcription accuracy. Specifically, our modified model 

achieved note F1 scores of 92.67 % and 90.51 % with latencies of 96 ms and 64 ms, respectively, compared to the 

baseline model’s note F1 score of 93.43 % with a latency of 160 ms. This methodology has potential for training 

AMT models for various interactive scenarios, including providing real-time feedback for piano education.
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초    록: 자동 음악 채보는 주어진 오디오에서 음표 정보를 추출하는 태스크로, 이 연구에서는 피아노 음악의 자동 

음악 채보 모델에서 지연 시간을 줄이는 방법을 소개한다. 신경망 기반 채보 모델이 피아노 채보에도 적용되어 높은 

정확도를 기록하였고 이를 이용한 실시간 구현도 소개된 바 있지만, 채보를 위한 지연 시간이 길어 인터랙티브 시나리

오에서 활용하기에 한계가 있었다. 이 문제를 해결하기 위해 본 연구는 Fast Fourier Transformation(FFT)에서 윈도

우 크기와 홉 크기를 줄이거나 합성곱 레이어의 커널 크기를 수정하고 시간 축에서 레이블을 이동하여 모델이 시작을 

더 일찍 예측하도록 훈련하는 등 피아노 전사를 위한 신경망의 내재적 지연 시간을 줄이는 몇 가지 기술을 제안한다. 

실험 결과, 이러한 접근 방식을 결합하면 높은 전사 정확도를 유지하면서 지연 시간을 줄일 수 있음을 알 수 있었다. 기

존 모델은 160 ms의 지연 시간을 가지고 음표 F1 점수는 93.43 %였으나 제안한 방법을 적용하면 96 ms와 64 ms의 

지연 시간 동안 각각 92.67 %와 90.51 %의 F1 점수를 달성할 수 있었다. 이러한 결과는 향후 피아노 교육을 위한 실시

간 피드백 제공 등 다양한 인터랙티브 시나리오를 위한 자동 채보 모델에 활용될 수 있을 것이다.
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popularity of piano transcription in AMT research is the 

unique characteristics of the instrument itself. Its percussive 

onset, and stable pitch make it well-suited for automatic 

transcription tasks. Furthermore, the piano’s popularity as 

a solo and accompanying instrument in a wide variety of 

musical genres make it a highly relevant and important 

focus for AMT research. Additionally, achieving accurate 

note-level labels is much easier for the piano compared to 

the other instruments, thanks to the computer-controlled 

piano.

Before the recent advances of deep learning, many AMT 

models used traditional machine learning methodology, 

such as non-negative matrix factorization,[1] and hidden 

Markov model,[2] or signal processing methods.[3,4] Then, 

models using Deep Neural Networks (DNN) outperformed 

the previous approaches.[5-7] Additionally, the release of a 

large-scale dataset featuring computer-controlled acoustic 

piano has significantly contributed to the improved 

performance of DNN-based AMT models.[8]

AMT is a versatile task that has numerous potential 

applications, including music education and analysis. For 

instance, Kong et al.[9] demonstrated that using transcribed 

Musical Instrument Digital Interface (MIDI) as input, 

rather than raw audio, can improve the accuracy of 

composer identification models. Additionally, recent 

research by Zhang et al.[10] has shown that AMT systems 

can be utilized to construct MIDI datasets of piano 

performances, with high levels of transcription accuracy 

that are suitable for training models in areas such as 

performer identification or expressive performance mo-

deling.

However, many existing AMT systems are designed for 

offline scenarios, where the system can process the entire 

audio input from start to finish. This often results in the use 

of bi-directional Recurrent Neural Networks (RNNs), 

which can leverage information from both past and future 

audio frames to improve note transcription accuracy.[7,11] 

However, these approaches are not well-suited to real-time 

or online scenarios, where it is necessary to transcribe 

notes in a timely manner, without access to future audio 

frames.

On the other hand, Kwon et al.[12] proposed an auto- 

regressive AMT model, which uses uni-directional RNN 

and enable on-line transcription without using “future” 

information. Specifically, the model makes predictions for 

each audio frame based only on past input audio frames 

and its own prediction for past input, making it well-suited 

for real-time applications. Our previous work[13] imple-

mented a real-time AMT system based on this auto- 

regressive AMT model. Nevertheless, the system directly 

employed the model without modifying its architecture or 

hyperparameters to optimize for real-time performance.

We found that simply using the model as is, without 

modification, led to certain limitations in terms of the 

system’s overall latency. This is because the model was 

not specifically designed to consider the latency of the 

transcription process, and therefore may require a certain 

amount of time after a note onset event in order to fully fill 

the receptive field of the backbone Convolutional Neural 

Network (CNN) with sufficient audio information. While 

the computation for each frame of 32 ms can be done in 

around 12 ms using only a consumer-level Central 

Processing Unit (CPU),[13] this intrinsic latency was about 

160 ms in the previous work’s setting, as presented in Fig. 

1. This clearly exceeds the acceptable range for an 

Fig. 1. Intrinsic latency is decided by the receptive 

field of CNN stack.
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interactive application such as real-time remote ensemble, 

which is known for having tolerance of 100 ms in case of 

piano.[14] If an AMT system can achieve latency that is 

acceptable for ensemble performance, which demands 

musically coherent synchronization, it will be possible to 

be employed to various interactive scenarios like piano 

education or human-machine ensemble. 

To address this issue, we explore several different 

methods for reducing the intrinsic latency of the neural 

AMT model, with the goal of improving its suitability for a 

range of interactive scenarios. Through experiments, we 

demonstrate the effectiveness of these approaches and 

highlight the potential applications of our optimized neural 

AMT model.

II. Related work

One of the early full adaptations of deep neural 

networks for piano music transcription was proposed by 

Sigtia et al.[5] This work was the first to propose employing 

convolutional neural networks as an acoustic model for 

AMT, and demonstrated that it can outperform previous 

approaches. Also, the authors propose a hash beam search 

algorithm to improve inference run times, mentioning its 

suitability for real-time applications. However, the paper 

did not introduce an actual implementation of real-time 

transcription system.

Hawthorne et al.[7] introduced a significant advance-

ment in neural AMT by proposing dual objective training, 

which separately predicts onsets and frames. Explicitly 

training the model to predict onsets led to a notable 

improvement in transcription accuracy for note onset. The 

overall structure of using a CNN stack and RNN on top of 

it was widely adopted in subsequent works.[11,12,15] Kong et 

al.[11] presented a new training objective of regressing 

onset timing instead of making frame-wise predictions, 

resulting in a model that outperformed[7] in most metrics. 

However, these models are primarily designed for offline 

scenarios using a bi-directional Gated Recurrent Unit 

(GRU) on top of CNN stacks. 

Several research works have aimed to achieve real-time 

piano transcription. Akbari and Cheng[16] proposed a 

system that uses computer vision to transcribe notes from 

videos of piano performances, without relying on any 

audio inputs. Although the system demonstrates high 

accuracy with low latency, it requires a top-view camera 

recording of the piano performance, which limits its 

practical applicability. Additionally, the computer vision 

approach may not be suitable for other musical instruments 

beyond keyboards.

Dessein et al.[17] presented a Non-negative Matrix 

Factorization (NMF) based model for real-time piano 

transcription using audio input. This model is designed to 

learn spectral templates for each individual piano pitch 

using isolated note samples. During inference, the model 

fixes the learned spectral templates and decomposes each 

input spectrogram frame using these templates. The 

primary advantage of this system is its ability to achieve 

low latency by making independent inferences for each 

time frame of the input spectrogram. This allows the 

system to transcribe the input audio in real-time with 

minimal latency. However, this approach also has a 

drawback in that it sacrifices transcription accuracy in 

favor of speed. By treating each time frame independently 

and using fixed spectral templates, the system is not able to 

exploit the information in the temporal progress of audio 

input. The reported accuracy on MIDI Aligned Piano 

Sounds (MAPS) dataset[3] has large gap compared to the 

deep-learning-based model.[7]

III. Methods

The latency of CNN-based music transcription model 

mainly comes from the number of audio samples that the 

system has to collect more after the onset event happens to 

feed to the CNN. The CNN layer detects onset-related 

features when the onset event is placed in its receptive field 

on the mel spectrogram input. Usually, if the training label 

and mel spectrogram is aligned in time-frame, the CNN is 

trained to detect onset when the onset event is located in 
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the center of its receptive field. 

Overall, the theoretical expected latency of the CNN 

can be represented as below,

  ×, (1)

where  denotes receptive field size of CNN stack in 

number of time frames of spectrograms,  denotes amount 

of label shift in terms of frame, and hop and window 

denote the size of hop and window for spectrogram, 

respectively. This represents mean latency where the onset 

event lies in the center of the window, and there is 

additional ±  latency based on where the onset lies 

within the corresponding window.

In this section, we introduce the baseline model[12] and 

our modification to reduce the latency.

3.1 Baseline model

We employ an autoregressive multi-state note model[12] 

as our baseline model, which is presented in Fig. 2. The 

model mainly consists of two parts: an acoustic model in 

CNN and a language model in autoregressive uni- 

directional Long Short-Term Memory (LSTM). There is a 

fully-connected layer between CNN and the language 

model.

The acoustic model uses a stack of three convolution 

layers with a kernel size of 3 for both time and frequency 

axes. The max pooling is done only with the frequency 

axis, thus preserving the number of time frames 

throughout the computation. It uses batch normalization 

after each convolutional layer and Rectified Linear Unit 

(ReLU) as its activation function.

Throughout the experiment, we only modify the input 

mel spectrogram or the kernel size of the acoustic model 

while fixing the fully-connected layer and the language 

model. 

3.1.1 Multi-state note model

One of the widely used framework for solving the music 

transcription task is to handle it as a multiple binary 

classification task. For example, Hawthorne et al.,[7] which 

first proposed an independent prediction for onset events, 

calculates losses for onset prediction and frame prediction 

separately with binary cross entropy loss. Even though the 

model is designed to consider onset prediction as its input 

for frame prediction, it is not guaranteed to have a coherent 

output between the onset predictions and frame predictions. 

For example, there can be a frame activation without the 

corresponding onset. On the other hand, the multi-state 

note model[12] uses categorical cross entropy. For each 

pitch for every time step, the label is defined as one of five 

states, off, onset, sustain, offset, and re-onset. Thus, the 

ground-truth label for the training can be notated as a 

I∈    × , where 88 represents number of 

total pitches in piano,   is a number of time frames, and 

each integer denotes the corresponding note state class. 

The details can be found in Reference [12].

Fig. 2. Architecture of the baseline model.[12]
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3.2 Reducing receptive field size

To reduce latency, one approach is to decrease the 

receptive field of the CNN stack. This can be achieved by 

reducing the kernel size of a convolution layer from three 

to one. As a result, the receptive field is reduced for two 

frames, which is equivalent to a reduction of one time 

frame in latency. In order to evaluate the trade-offs 

between latency and transcription performance, we 

conducted an experiment by varying the kernel sizes. 

The baseline model, Kwon et al.,[12] uses a stack of three 

convolutional layers with a kernel size of three and 

padding with one in the time-frame axis. For each of the 

three layers, we modified the kernel size for the time axis 

from three to one as presented in Fig. 3, resulting in eight 

possible combinations. The kernel size for the frequency 

axis was kept at three for all combinations.

3.3 Shifting label

The current convention in automatic music transcription 

is to align onset events labels exactly the same with an 

input spectrogram. This can be represented as an equation 

below,

  round

I      (2)

where  is onset timing in second,  is a hop length in 

second,  is a pitch, and  is a corresponding index for 

onset class.

The conventional model uses a convolutional layer with 

a padding size that preserves the number of time steps, so 

the output of the CNN for given input X∈ℝ
F×T  is 

Y∈ ℝ
C×T , where  denotes the number of frequency 

bin in mel spectrogram and   denotes the number of 

output channels of the CNN. As the receptive field of the 

CNN extends in both directions of the time axis, Y   is 

calculated using X   , 

where  represents the receptive field size of the CNN. If 

the piano-roll-like label I is aligned with the input 

mel-spectrogram X , the entire AMT model will be trained 

to predict the onset event using  more time 

frames of mel-spectrogram.

If we shift the label I to  frame earlier so that 

I      I   , the model is forced to use 

X       to predict 

Fig. 4. Shifting label in time axis can enforce the 

model to detect a note event that occurs in the later 

part of its receptive field.

(a)

(b) (c)

Fig. 3. Receptive field of CNN stacks with different 

kernel size. Kernel sizes from input (bottom) to 

output (top) are: (a) 3, 3, 3 (baseline), (b) 1, 3, 3 (c) 

3, 1, 1.
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the onset event on , as presented in Fig. 4. If the shift 

amount  is less or equal to , the CNN can be 

trained to detect the onset since the mel spectrogram frame 

including the onset event is within the CNN’s receptive 

field.

3.4 Reducing FFT size of hop size

The latency of the AMT system is also decided by the 

Fast Fourier Transform (FFT) parameters of the input 

mel-spectrogram. If we decrease the window or hop size, 

the latency can be reduced as shown in Eq. (1). Never-

theless, reducing the window size decreases frequency 

resolution, which can negatively affect transcription 

accuracy, especially for low-pitched notes. Additionally, 

using a smaller hop size directly increases the frame rate of 

the AMT system, requiring more computational resources. 

In our study, we examined how the accuracy of the model 

is influenced by using a window size of 1,024 (64 ms) and 

hop size of 256 (16 ms), which differs from the previous 

research that used a window size of 2,048 (128 ms) and 

hop size of 512 (32 ms).[7,12]

IV. Experiments

4.1 Dataset

For the experiment, we utilized the MIDI and Audio 

Edited for Synchronous TRacks and Organization 

(MAESTRO) dataset,[8] which is the most commonly used 

dataset for piano music transcription. The dataset com-

prised of pairs of audio recordings and corresponding 

MIDI recordings of the piano performance that is captured 

by a computer-controlled piano, Disklavier. We specifi-

cally used v.3.0.0 of the MAESTRO, which omitted 

chamber music recordings that were erroneously included 

in v.2.0.0. The total length of audio recordings is 198.7 h, 

with approximately 7 million notes in total. The dataset 

also provides predefined train, validation, and test splits, 

which we adhered to strictly.

4.2 Metrics

The standard metrics for evaluating AMT system are 

frame-based and note-based F1 score which are provided 

in mir_eval package.[18] Note metric evaluates the 

prediction result decoded as note-level events. Each note 

event can be represented as a tuple of pitch, onset time, and 

offset time. Then, we compare the reference notes list and 

the predicted notes list. As following the convention, a 

note prediction within 50 ms error is considered as a 

correct prediction. Since the real-time applications such as 

ensemble performance or piano education is more 

sensitive to note onsets rather than frame-wise activation 

or note offset, we only report precision, recall, and F1 

score of note onset metric. The note onset metric was also 

used for selecting the best training states for each model.

4.3 Training detail

We strictly followed the experiment settings of the 

previous work,[12] which was also used in Reference 

[7], using the PyTorch implementation provided with 

Reference [15]. For the input, we used log-compressed 

mel-spectrogram with 229 mel bin, using audio input of 

sampling rate of 16 kHz. The number of CNN channels 

and hidden size of LSTM is presented in Fig. 2, which is 

also the same with Reference [12].

We randomly sliced each data sample into 20 s 

segments and set the batch size to 16. We used the Adam 

optimizer with an initial learning rate of 0.0006, which was 

multiplied by 0.98 every 10,000 steps. We evaluated the 

performance metrics on the validation set every 1,000 

iterations and selected the state with the highest note onset 

F1 score for the final evaluation on the test set. 

We employed teacher-forced learning during the 

training phase, where the model’s autoregressive input is 

provided with the ground-truth label. At the inference 

stage, the state with the highest predicted probability, i.e., 

argmax, is selected as the output state for each pitch at each 

time step and used as the autoregressive input for the 

subsequent time step.
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V. Results and discussion

Table 1 presents the evaluation results of each model for 

the test set. For each model, we also provide expected 

intrinsic latency following Eq. (1). 

The baseline model, which has an expected latency of 

160 ms, showed 93.43 % in note F1 score. We investigated 

three options for reducing latency, and found that each 

method has different effects on the accuracy, as also 

shown in Fig. 5.

Reducing kernel sizes showed the best accuracy for the 

latency of 128 ms. Replacing size three kernel with size 

one kernel at the bottom layer of CNN stack showed the 

best F1 score, even slightly better than the baseline, albeit 

marginally. However, the accuracy drops to 91.20 % if the 

kernel sizes of two layers were reduced from three to one, 

which corresponds to the latency of 96 ms. The F1 score 

significantly drops to 63.52 % if we replace all the three 

kernels to size one.

Shifting labels showed better accuracy for latency of 96 

Table 1. Experiment results. The bold font represents the best score among the same latency. Kernel represents 

kernel size of three convolutional layers notated in order of forward pass. Shift represents number of time frame 

of label shift.

Models Latency

(ms)

Note onset

Kernel shift window hop precision recall  F1

Baseline

3,3,3 0 2,048 512 160 0.9738 0.8996 0.9343

Reducing convolutional kernel sizes

1,3,3 0 2,048 512 128 0.9767 0.8983 0.9348

3,1,3 0 2,048 512 128 0.9811 0.8906 0.9324

3,3,1 0 2,048 512 128 0.9763 0.8884 0.9290

1,1,3 0 2,048 512 96 0.9678 0.8631 0.9104

1,3,1 0 2,048 512 96 0.9731 0.8616 0.9120

3,1,1 0 2,048 512 96 0.9328 0.8466 0.8848

1,1,1 0 2,048 512 64 0.7708 0.5552 0.6352

Label shift + Reducing convolutional kernel sizes

3,3,3 1 2,048 512 128 0.9707 0.8966 0.9309

3,3,3 2 2,048 512 96 0.9609 0.8875 0.9214

3,3,3 3 2,048 512 64 0.8462 0.8161 0.8145

1,3,3 1 2,048 512 96 0.9424 0.8868 0.9066

3,1,3 1 2,048 512 96 0.9618 0.8871 0.9209

3,3,1 1 2,048 512 96 0.9707 0.8888 0.9267

FFT window size 1,024 + Label shift + Reducing convolutional kernel sizes

3,3,3 0 1,024 512 128 0.9694 0.8868 0.9251

3,3,3 1 1,024 512 96 0.9401 0.8484 0.8901

3,3,3 2 1,024 512 64 0.9469 0.8630 0.9008

3,3,3 3 1,024 512 32 0.8936 0.7292 0.7971

3,3,1 1 1,024 512 64 0.9665 0.8549 0.9051

FFT hop size 512 + Label shift

3,3,3 0 1,024 256 80 0.8962 0.8768 0.8746

3,3,3 1 1,024 256 64 0.9562 0.8480 0.8966

3,3,3 2 1,024 256 48 0.9310 0.8002 0.8580

3,3,3 3 1,024 256 32 0.9151 0.7295 0.8050
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ms and 64 ms compared to the reducing kernel sizes. 

However, the performance drop when shifting the label to 

the last frame of the receptive field (e.g., label shift 3 with 

the baseline model) was significantly large. We assume 

that one of the reasons is that the amount of audio sample 

after note onset can vary a lot if the model only uses a 

single frame of mel-spectrogram without using subsequent 

frames. For example, with the window size 2,048 and hop 

size 512, the amount of audio samples after note onset 

included in the onset-labeled spectrogram frame is 

between 768 to 1,280. If the onset occurs in the ending 

time boundary, the model has to detect the onset with only 

40 % less audio samples compared to the onset that 

occurred in the beginning time boundary. 

Reducing FFT window size from 2,048 to 1,024 showed 

lower accuracy for latency of 128 ms or 96 ms compared to 

kernel resizing or label shifting. We suppose the reason is 

because of degraded frequency resolution from lower FFT 

size. However, combining the reduced window size with 

label shifting and kernel reduction showed the best result 

for latency of 64 ms, note F1 score of 90.51 %, which is 

significantly higher than applying only kernel size modifi-

cation (63.52 %) or label shift (81.45 %) with the same 

latency. The result shows that the window size has to be 

reduced to achieve a good performance with lower latency 

such as 64 ms. 

Reducing hop size did not have a clear advantage over 

other methods. Also, considering that reducing hop size 

demands more computation power due to the increased 

frame rate, it would be carefully applied to the real-time 

application.

In summary, we found that each of the proposed 

methods has different optimal range where the accuracy 

preserved relatively stable. We observed that replacing 

one convolutional layer of kernel size three with kernel 

size one layer has relatively little impact on the accuracy. 

While the labeling shift approach is effective, it should be 

avoided if it results in label shifting to the last frame of the 

receptive field. In cases where the above methods have 

already reached their optimal limitation, reducing window 

size of FFT can be considered to further reduce the latency 

with optimal accuracy loss. Additionally, the large gap in 

accuracy among models with identical latency indicates 

that the transcription accuracy with low-latency is not 

solely determined by the number of required audio samples 

but also by the manner in which they are processed.

VI. Conclusion

In this paper, we experimented with several modifi-

cations to a previous neural network model for automatic 

piano transcription to reduce the latency in a real-time 

scenario. Three options were explored, reducing receptive 

field size, reducing window or hop size of FFT, and 

shifting the label during the training. Even though every 

option for reducing latency has a tradeoff with the 

transcription accuracy, we have found that mixing these 

options shows the best accuracy for a given target latency. 

For example, we could reduce the latency from 160 ms to 

96 ms with losing note F1 score of less than 0.8 %p by 

reducing the kernel size of one convolutional layer and 

Fig. 5. Note onset F1 score as a function of latency 

for various methods, categorized as models with 

reducing kernel size only (kernel size), models with 

label shifting (label shift), models with FFT window 

1,024 and label shifting (window + shift), and the 

combination of the three methods that exhibited the 

best accuracy for a given latency (combined best). 

Only the best model of each method for given latency 

is presented. To enhance visual clarity, the Y-axis 

scale has been limited.
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also applying label shift for one time frame. Also, 

combined with reduced window size, the modified model 

achieved note F1 score of 90.51 % with a latency of 64 ms. 

Even though the total system latency must account for 

additional variables such as computation time, reducing 

the intrinsic latency of the acoustic model can enable 

achieving a latency that falls within the acceptable range 

for applications such as ensemble performances.[14]

Even though the experiment was based on a single 

architecture proposed by Kwon et al.,[12] we expect that the 

proposed methodology can be applied to other transcription 

models. Also, the experiment result can help to design the 

proper kernel size or FFT parameters based on the use 

scenario of the AMT model. For example, if low latency is 

more important than high recall, one can use small window 

size and a shorter receptive field. The code is available in 

https://github.com/jdasam/low-latency-amt.
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