• 제목/요약/키워드: Kernel machine technique

검색결과 41건 처리시간 0.022초

Enhance Health Risks Prediction Mechanism in the Cloud Using RT-TKRIBC Technique

  • Konduru, Venkateswara Raju;Bharamgoudra, Manjula R
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.166-174
    • /
    • 2021
  • A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC) technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those provided by the state-of-the-art methods.

단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활 (Smoothing Kaplan-Meier estimate using monotone support vector regression)

  • 황창하;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1045-1054
    • /
    • 2012
  • 서포트벡터 기계는 분류 및 비선형 함수추정에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 두 개의 입력변수와 회귀함수의 단조 관계를 이용하여 단조 서포트벡터기계를 제안하고, Kaplan-Meier의 방법에 의해서 생존함수의 추정값이 주어진 경우 제안된 방법을 이용하여 생존 함수를 평활하는 방법 또한 제안한다. 모의실험에서는 실제 생존함수를 이용하여 Kaplan-Meier의 방법에 의한 생존함수의 추정값과의 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.

무슬림 관광객 증대를 위한 머신러닝 기반의 할랄푸드 분류 프레임워크 (A Halal Food Classification Framework Using Machine Learning Method for Enhancing Muslim Tourists)

  • 김선아;김정원;원동연;최예림
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.273-293
    • /
    • 2017
  • Purpose The purpose of this study is to introduce a framework that helps Muslims to determine whether a food can be consumed. It can complement existing Halal food classification services having a difficulty of constructing Halal food database. Design/methodology/approach The proposed framework includes two components. First, OCR(Optical Character Recognition) technique is utilized to read the food additive information. Second, machine learning methods were used to trained and predicted to determine whether a food can be consumed using the provided information. Findings Among the compared machine learning methods, SVM(Support Vector Machine), DT(Decision Tree), and NB(Naive Bayes), SVM with linear kernel and DT had excellent performance in the Halal food classification. The framework which adopting the proposed framework will enhance the tourism experiences of Muslim tourists who consider keeping the Islamic law most importantly. Furthermore, it can eventually contribute to the enhancement of smart tourism ecosystem.

Windows CE 기반의 CNC 선반 개발에 관한 연구 (Development Opened CNC Software Based on MS Winsows CE)

  • 임태완;이철수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.448-453
    • /
    • 2003
  • This paper researched about technique of Opened CNC that were able to adapt themselves to rapid development of software and hardware. It is basic research what develop a scheme whereby technic make property. This paper theorized about to realize Opened CNC Software which is developing CNC Software flow from building Windows CE operating system's image that is possible realtime acting and multitasking. And Opened CNC Software's component designed independent classified modules. Classify Opened CNC Software's component which was consisted of basic OS Kernel, NC Code parser, Servo Motor Control, Software PLC, MMI(Man-Machine Interftce). And show there's functional example

  • PDF

교차검증을 이용한 SVM 전력수요예측 (SVM Load Forecasting using Cross-Validation)

  • 조남훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권11호
    • /
    • pp.485-491
    • /
    • 2006
  • In this paper, we study the problem of model selection for Support Vector Machine(SVM) predictor for short-term load forecasting. The model selection amounts to tuning SVM parameters, such as the cost coefficient C and kernel parameters and so on, in order to maximize the prediction performance of SVM. We propose that Cross-Validation method can be used as a model selection algorithm for SVM-based load forecasting technique. Through the various experiments on several data sets, we found that the difference between the prediction error of SVM using Cross-Validation and that of ideal SVM is less than 5%. This shows that SVM parameters for load forecasting can be efficiently tuned by using Cross-Validation.

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

기계시각을 이용한 현미의 개체 품위 판별 알고리즘 개발 (Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision)

  • 노상하;황창선;이종환
    • Journal of Biosystems Engineering
    • /
    • 제22권3호
    • /
    • pp.295-302
    • /
    • 1997
  • An ultimate purpose of this study was to develop an automatic system for brown rice quality inspection using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor magnifying the input image and optical fiber for oblique lightening. Primarily, geometical and optical features of images were analyzed with paddy and the various brown rice kernel samples such as a sound, cracked, peen-transparent, green-opaque, colored, white-opaque and brokens. Secondary, geometrical and optical parameters significant for identifying each rice kernels were screened by a statistical analysis(STEPWISE and DISCRIM procedure, SAS wer. 6) and an algorithm fur on- line discrimination of the rice kernels in static state were developed, and finally its performance was evaluated. The results are summarized as follows. 1) It was ascertained that the cracked kernels can be detected when e incident angle of the oblique light is less than 2$0^{\circ}C$ but detectivity was significantly affected by the angle between the direction of the oblique light and the longitudinal axis of the rice kernel and also by the location of the embryo with respect to the oblique light. 2) The most significant Parameters which can discriminate brown rice kernels are area, length and R, B and r values among the several geometrical and optical parameters. 3) Discrimination accuracies of the algorithm were ranged from 90% to 96% for a sound, cracked, colored, broken and unhulled, about 81 % for green-transparent and white-opaque and 75 % for green-opaque, respectively.

  • PDF

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.