• 제목/요약/키워드: Keratinocytes

검색결과 527건 처리시간 0.024초

Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

  • Zheng, Jian;Piao, Mei Jing;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제21권4호
    • /
    • pp.270-276
    • /
    • 2013
  • Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofluorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxide-induced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosis-promoting mediators (i.e., B-cell lymphoma-2-associated ${\times}$ protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.

Prunus Yedoensis Inhibits the Inflammatory Chemokines, MDC and TARC, by Regulating the STAT1-Signaling Pathway in IFN-γ-stimulated HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin;Lee, Hye-Ja;Yoon, Weon-Jong;Yang, Eun-Jin;Park, Sun-Son;Kang, Hee-Kyoung;Park, Myung-Hwan;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.394-402
    • /
    • 2008
  • Atopic dermatitis (AD) is an inflammatory skin disease commonly characterized by infiltration of inflammatory cells into skin lesions. Keratinocytes produce many chemokines that are involved in the pathogenesis of skin disorders. In particular, macrophage-derived chemokine (MDC/CCL22) and thymus and activationregulated chemokine (TARC/CCL17) are Th2-type cytokines. Serum MDC and TARC levels are increased in AD patients. In this study, we investigated the anti-inflammatory effect and mechanism of action of the active fraction from Prunus yedoensis bark. We evaluated their inhibitory effects on the AD-like inflammatory markers (MDC and TARC) and JAK-STAT pathway (STAT1) in HaCaT keratinocytes. The EtOAc fraction of the crude extract (80% EtOH) and the E5 sub-fraction potently inhibited the induction of MDC and TARC mRNA and protein at 50 ${\mu}g$/mL in HaCaT cells. In addition, the E5 sub-fraction inhibited the phosphorylation of STAT1 protein associated with IFN-$\gamma$ signaling transduction in a dose-dependent manner. Thus, P. yedoensis may have antiatopic activity by suppressing the inflammatory chemokines (MDC and TARC).

Phloxine O, a Cosmetic Colorant, Suppresses the Expression of Thymic Stromal Lymphopoietin and Acute Dermatitis Symptoms in Mice

  • Lee, Hye Eun;Yang, Gabsik;Kim, Kyu-Bong;Lee, Byung-Mu;Lee, Joo Young
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.481-486
    • /
    • 2018
  • Cosmetics are primarily applied to the skin; therefore, the association of cosmetic dyes with skin diseases or inflammation is a topic of great interest. Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine that activates dendritic cells to promote Th2 inflammatory immune responses. TSLP is highly expressed in keratinocytes under inflammatory conditions, which suggests that it may play a critical role in the development of skin diseases, such as atopic dermatitis. Therefore, we investigated whether cosmetic dyes influenced the production of TSLP by keratinocytes. Phloxine O, also known as D&C Red No.27, is one of the most common red synthetic pigments and is widely used in colored cosmetics. Our results showed that Phloxine O downregulated phorbol 12-myristate 13-acetate-induced production of TSLP in a murine keratinocyte cell line (PAM212). Phloxine O also suppressed TSLP expression in KCMH-1 cells, which are mouse keratinocytes that constitutively produce high levels of TSLP. To investigate the in vivo effects of Phloxine O, we induced TSLP expression in mouse ear skin by topically applying MC903, a vitamin D3 analogue that is a well-known inducer of atopic dermatitis-like symptoms. Topical application of Phloxine O prevented MC903-induced TSLP production in mouse ear skin, attenuated the acute dermatitis-like symptoms and decreased serum IgE and histamine levels in mice. Suppression of TSLP expression by Phloxine O correlated with reduced expression of OX40 ligand and Th2 cytokines in mouse ear skin. Our results showed that Phloxine O may be beneficial to prevent dermatitis by suppressing the expression of TSLP and Th2 cytokines in skin.

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

각질형성세포에서 Chrysin이 Vitamin D Receptor의 전사 활성화에 미치는 영향 (The Effect of Chrysin on the Transcriptional Activity of Vitamin D Receptor in Human Keratinocytes)

  • 추정하;이상화
    • 대한화장품학회지
    • /
    • 제39권1호
    • /
    • pp.75-81
    • /
    • 2013
  • Chrysin (5,7-dihydroxyflavone)은 프로폴리스, 꿀 같은 음식과 다양한 식물에 존재하는 천연 플라보노이드이다. Chrysin은 항산화, 항노화, 항염, 항암 효과 등 다양한 생물학적 효과를 가진다고 알려져 있다. 이 연구에서, 우리는 사람의 각질형성세포에서 chrysin이 VDR을 통한 transcriptional activity에 미치는 영향을 dual-luciferase assay을 통하여 살펴보았다. Chrysin은 농도 의존적으로 VDR을 통한 transcriptional activity를 증가시켰다. Quantitative real time PCR을 통해 chrysin이 사람의 각질형성세포에서 VDR mRNA의 발현을 증가시킴을 확인하였다. 또한, chrysin이 각질형성세포의 분화 마커인 keratin 10, involucrin 그리고 filaggrin의 mRNA 발현을 증가시킴을 확인하였다. 이러한 연구 결과는 chrysin이 VDR을 통한 transcriptional activity를 조절하여 각질형성세포의 분화를 촉진시킬 수 있다는 것을 시사한다.

비후성 반흔 각질세포와 정상 각질세포의 유전자 비교분석 (Difference of Gene Expression between Hypertrophic Scar Keratinocytes and Normal Keratinocytes)

  • 최성원;정호윤;임영국;김훈남;오지원;김문규;전세화;홍용택
    • Archives of Plastic Surgery
    • /
    • 제37권4호
    • /
    • pp.317-322
    • /
    • 2010
  • Purpose: There is no clear evidence of the original cause of hypertrophic scar, and the effective method of treatment is not yet established. Recently the steps of searching in gene and molecular level are proceeding. we are trying to recognize the difference between keratinocytes of hypertrophic scar and normal skin. Then we do support the comprehension of the scar formation mechanism and scar management. Methods: Total RNAs were extracted from cultured keratinocytes from 4 hypertrophic scars and normal skins. The cDNA chips were prepared. A total of 3063 cDNAs from human cDNA library were arrayed. And the scanning data were analyzed. Results: On microarray, heat shock protein, pyruvate kinase, tumor rejection antigen were more than 2 fold intensity genes. Among them, heat shock 70 kd protein showed the strongest intensity difference. Conclusion: In this study, it can be concluded that heat shock proteins play an important role in the process of wound healing and scar formation. This study provides basic biologic information for scar research. The new way of the prevention and treatment of scar formation would be introduced with further investigations.

Protective Effect of Resveratrol on the Oxidative Stress-Induced Inhibition of Gap Junctional Intercellular Communication in HaCaT Keratinocytes

  • Lee, Jong-Chan;Lee, Sun-Mee;Kim, Ji-Hyun;Ahn, Soo-Mi;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.224-231
    • /
    • 2003
  • The aim of this study was to investigate the effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes. Anti-oxidative activity of resveratrol was measured by $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl assay and dichlorodihydrofluorescein diacetate oxidation assay. Gap junctional intercellular communication in HaCaT keratinocytes was assessed using the scrape loading/dye transfer technique. Western blots and reverse transcription-polymerase chain reaction were also analyzed for connexin 43 protein and mRNA expression, respectively. Resveratrol scavenged directly the stable $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl radical over a concentration range of 4 mg/ml ($78.2{\pm}2.7$% of control) to 500 mg/ml ($29.9{\pm}4.2$% of control) and decreased the intracellular reactive oxygen species induced by ultraviolet A (UVA) irradiation ($89.3{\pm}1.1$% of UVA group), ultraviolet B (UVB) irradiation ($70.9{\pm}1.7$% of UVB group) and 12-0-tet-radecanoylphorbol-13-acetate (TPA, $48.3{\pm}1.1$% of TPA group), respectively. UVA irradiation and TPA markedly reduced gap junctional intercellular communication, which was restored by resveratrol. There were no significant differences in the level of connexin 43 protein and mRNA expression among any of the experimental groups. Our data suggests that resveratrol has the protective effect on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes, and this protection is likely due to the scavenging of reactive oxygen species.

Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

  • Han, Xia;Piao, Mei Jing;Kim, Ki Cheon;Hewage, Susara Ruwan Kumara Madduma;Yoo, Eun Sook;Koh, Young Sang;Kang, Hee Kyoung;Shin, Jennifer H;Park, Yeunsoo;Yoo, Suk Jae;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.357-366
    • /
    • 2015
  • Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • 제11권4호
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways

  • Piao, Mei Jing;Kim, Ki Cheon;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.90-97
    • /
    • 2021
  • Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.