• Title/Summary/Keyword: Kelvin model

Search Result 150, Processing Time 0.036 seconds

A Heuristic Approach for Simulation of time-course Visual Adaptation for High Dynamic Image Streams

  • Kelvin, Bwalya;Yang, Seung-Ji;Choi, Jong-Soo;Park, Soo-Jun;Ro, Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.285-288
    • /
    • 2007
  • There is substantial evidence from earlier researches that older adults have difficult seeing under low illumination and at night, even in the absence of ocular diseases. During human aging, there is a rampant decrease in rod/cone-meditated adaptation which is caused by delayed rhodopsin regeneration and pigment depletion. This calls for a need to develop appropriate visual gadgets to effectively aid the aging generation. Our research culminates its approach from Pattanaik's model by making extensions to temporal visual filtering, thereby simulating a reduction of visual response which comes with age. Our filtering model paves way and lays a foundation for future research to develop a more effective adaptation model that may be further used in developing visual content adaptation aids and guidelines in MPEG 21 environment. We demonstrate our visual model using a High Dynamic Range image and the experiment results are in conversant with the psychophysical data from previous vision researches.

  • PDF

Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models

  • Lewandowski, R.;Bartkowiak, A.;Maciejewski, H.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.113-137
    • /
    • 2012
  • Frame structures with viscoelastic (VE) dampers mounted on them are considered in this paper. It is the aim of this paper to compare the dynamic characteristics of frame structures with VE dampers when the dampers are modelled by means of different models. The classical rheological models, the model with the fractional order derivative, and the complex modulus model are used. A relatively large structure with VE dampers is considered in order to make the results of comparison more representative. The formulae for dissipation energy are derived. The finite element method is used to derive the equations of motion of the structure with dampers and such equations are written in terms of both physical and state-space variables. The solution to motion equations in the frequency domain is given and the dynamic properties of the structure with VE dampers are determined as a solution to the appropriately defined eigenvalue problem. Several conclusions concerning the applicability of a family of models of VE dampers are formulated on the basis of results of an extensive numerical analysis.

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.

A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model

  • Deswal, Sunita;Kalkal, Kapil Kumar;Sheoran, Sandeep Singh
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2017
  • In this work, we present a theoretical framework to study the thermovisco-elastic responses of homogeneous, isotropic and perfectly conducting medium subjected to inclined load. Based on recently developed generalized thermoelasticity theory with fractional order strain, the two-dimensional governing equations are obtained in the context of generalized magnetothermo-viscoelasticity theory without energy dissipation. The Kelvin-Voigt model of linear viscoelasticity is employed to describe the viscoelastic nature of the material. The resulting formulation of the field equations is solved analytically in the Laplace and Fourier transform domain. On the application of inclined load at the surface of half-space, the analytical expressions for the normal displacement, strain, temperature, normal stress and tangential stress are derived in the joint-transformed domain. To restore the fields in physical domain, an appropriate numerical algorithm is used for the inversion of the Laplace and Fourier transforms. Finally, we have demonstrated the effect of magnetic field, viscosity, mechanical relaxation time, fractional order parameter and time on the physical fields in graphical form for copper material. Some special cases have also been deduced from the present investigation.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Review of Newman-Sharma Wave Pattern Resistance Analysis Using Experimental and Computational Model Tests of KCS (KCS 선형의 모형시험 및 CFD 해석을 통한 Newman-Sharma 파형저항 추정법의 검토)

  • Myoungsoo Kim;Minchang Kim;Jeonghwa Seo;Woochan Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.76-85
    • /
    • 2023
  • The present study aims to review the wave pattern resistance analysis method suggested by the International Towing Tank Conference. From the experimental database of a container carrier ship model, the wave pattern measurement and resistance test results are utilized. The wave pattern resistance at the design Froude number is obtained to be compared with the wave making resistance of experiments. Wave pattern resistance is lower than wave making resistance by 1978 ITTC and uniform regardless of transverse location of wave cut. The method is also applied to the wave height field by Computational Fluid Dynamics (CFD) analyses with Froude number variation. Although numerical damping suppressed waves in downstream, waves around the hull and wave pattern resistance are properly predicted.