• Title/Summary/Keyword: Kelvin

Search Result 327, Processing Time 0.029 seconds

Wave Run-up Characteristics of Ocean Wave, Current, and Kelvin Wave Interaction in the Canal (운하에서 파랑·흐름·항주파의 상호작용에 의한 처오름 특성)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jung, Kwang Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • The numerical simulation using LES-WASS-3D is developed to investigate the wave run-up on the revetment along the canal. Interaction of ocean wave, current, and Kelvin wave is investigated on 40 conditions varying the number of ship, cruising direction, and relative cruising location of ships, when a 650TEU container cruises in the canal. The mean wave run-up heights on the revetment are compared for every simulated conditions. The largest height of wave run-up is generated at the C-pair condition and the wave run-up generated at the canal entrance is larger than that at the inside canal. When Kelvin waves is interacted with the current, the mean wave run-up height is increased approximate 10% compared with no current condition.

ENERGY DECAY RATE FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY

  • Kang, Yong Han
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.355-364
    • /
    • 2016
  • In this paper, we study exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with Balakrishnan-Taylor damping and acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the internal material damping in the model as like Kang [3]. Energy decay rate are obtained by the exponential stability of solutions by using multiplier technique.

ENERGY DECAY RATES FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Seo, Young-Il;Kang, Yong-Han
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the internal material damping in the model as like Gannesh C. Gorain [1]. Energy decay rates are obtained by the exponential stability of solutions by using multiplier technique.

Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law

  • Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.129-139
    • /
    • 2020
  • In this piece of work, carbon nanotubes motion equations are framed by Kelvin's method. Employment of the Kelvin's method procedure gives birth to the tube frequency equation. It is also exhibited that the effect of frequencies is investigated by varying the different index of polynomial function. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported and these frequency curves are higher than that of clamped-free curves. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes.

Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for an Oscillating Cylinder Advancing in the Free Surface

  • Hong, Do-Chun;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.34-53
    • /
    • 2002
  • Numerical solution of the forward-speed radiation problem for a half-immersed cylinder advancing in regular waves is presented by making use of the improved Green integral equation in the frequency domain. The B-spline higher order panel method is employed stance the potential and its derivative are unknown at the same time. The present numerical solution of the improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the Green integral equation using the forward-speed Kelvin-type Green function.

Numerical Calculations of the Wave Resistance of Ships by Neumann-Kelvin Theory (Neumann-Kelvin 이론에 의한 조파 저항의 수치 계산)

  • M.W.,Eo;B.R.,Son;S.H.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 1987
  • The wave resistance of ships is calculated with the numerical solution of the Newmann-Kelvin problem. For the sake of the numerical evaluation of the Green function, Shen and Farell's method is used[7]. In particular, the contribution of the line integral term in the Neumann-Kelvin problem to the calculated values of the wave resistance is shown. For the Wigley's hull the calculated values of the wave resistance and the wave profiles at the hull surface are in fairly good agreement with the experimental data. However, for the series 60 hull and the practical hull, a 454,000 cubic feet reefer vessel, the calculated results of the wave resistance show definte hollows and humps considering the experimental result.

  • PDF

Realistic Soap Bubble Appearance using Background Scene and Kelvin Temperature Matching

  • Yoo, Sangwook;Chin, Seongah
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.265-270
    • /
    • 2021
  • VR and AR contents provide a rich user experience [1]. Realistic content with human computer interaction and immersion provides an improved user experience, but there is a limit to producing all elements realistically. In this study, we propose a method to advance the rendering of immersive content using background color information [2]. First, the elements necessary for Kelvin temperature rendering are derived from the color and background as context elements, and the rendering effect has been realized in the soap bubble. For soap bubbles Kelvin temperature rendering, the average color of the background is extracted and the color with the highest similarity is applied by comparing the main color and Kelvin temperature.

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

Parametric study on earthquake induced pounding between adjacent buildings

  • Naserkhaki, Sadegh;Abdul Aziz, Farah N.A.;Pourmohammad, Hassan
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.503-526
    • /
    • 2012
  • Pounding between closely located adjacent buildings is a serious issue of dense cities in the earthquake prone areas. Seismic responses of adjacent buildings subjected to earthquake induced pounding are numerically studied in this paper. The adjacent buildings are modeled as the lumped mass shear buildings subjected to earthquake acceleration and the pounding forces are modeled as the Kelvin contact force model. The Kelvin model is activated when the separation gap is closed and the buildings pound together. Characteristics of the Kelvin model are extensively explored and a new procedure is proposed to determine its stiffness. The developed model is solved numerically and a SDOF pounding case as well as a MDOF pounding case of multistory adjacent buildings are elaborated and discussed. Effects of different separation gaps, building heights and earthquake excitations on the seismic responses of adjacent buildings are obtained. Results show that the seismic responses of adjacent buildings are affected negatively by the pounding. More stories pound together and pounding is more intense if the separation gap is smaller. When the height of buildings differs significantly, the taller building is almost unaffected while the shorter building is affected detrimentally. Finally, the buildings should be analyzed case by case considering the potential earthquake excitation in the area.

Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.307-322
    • /
    • 2020
  • In this article, free vibration of double-walled carbon nanotubes (DWNT) based on nonlocal Kelvin's model have been investigated. For this purpose, a nonlocal Kelvin's model is established to observe the small scale effect. The wave propagation is employed to frame the governing equations as eigenvalue system. The influence of nonlocal parameter subjected to different end supports has been overtly examined. The new set of inner and outer tubes radii investigated in detail against aspect ratio. The influence of boundary conditions via nonlocal parameter is shown graphically. Due to small scale effect fundamental frequency ratio decreases as length to diameter ratio increases. Small scale effect becomes negligible on all end supports for the higher values of aspect ratio. With the smaller inner tube radius double-walled CNT behaves more sensitive towards nonlocal parameter. The results generated furnish the evidence regarding applicability of nonlocal model and also verified by earlier published literature.