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ENERGY DECAY RATE FOR THE KELVIN-VOIGT TYPE

WAVE EQUATION WITH BALAKRISHNAN-TAYLOR

DAMPING AND ACOUSTIC BOUNDARY

Yong Han Kang

Abstract. In this paper, we study exponential stabilization of the vibra-

tions of the Kelvin-Voigt type wave equation with Balakrishnan-Taylor
damping and acoustic boundary in a bounded domain in Rn. To stabi-

lize the systems, we incorporate separately, the internal material damping

in the model as like Kang [3]. Energy decay rate are obtained by the
exponential stability of solutions by using multiplier technique.

1. Introduction

In this paper, we consider the uniform stability of a mathematical problems
governed by the following a nonlinear wave equations of the Kelvin-Voigt type
with Balakrishnan-Taylor damping and acoustic boundary conditions:

|u′|ρu′′ = (a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

∇u · ∇u′dx)4u+ 2λ4u′ in Ω×R+,

(1.1)

u = 0 on Γ0 ×R+, (1.2)

(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

∇u · ∇u′dx)
∂u

∂ν
+ 2λ

∂u
′

∂ν
= y′ on Γ1 ×R+, (1.3)

u′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+, (1.4)

u(0) = u0, u
′(0) = u1 in Ω, (1.5)

y(0) = y0 on Γ1 (1.6)

where Ω is a bounded, connected set in Rn(n ≥ 1) having a smooth boundary
Γ = ∂Ω, consisting of two parts Γ0 and Γ1 such that Γ0∪Γ1 = Γ. Primes denote
the time derivative, ∆ the Laplacian in Rn taken in space variables, ν the unit
normal of Γ pointing towards exterior of Ω and R+ := (0,∞). The parameters
λ > 0 is a small internal material damping coefficient, and a > 0, b > 0, σ > 0
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are constant real numbers. p and q are functions satisfying some conditions
to be specified later. Physically, the integro-differential equations (1.1)-(1.6)
occurs in the study of vibrations of damped flexible space structures in bounded
domain in Rn. The nonlinear term |u′|ρu′′

, ρ > 0 is modeled materials whose
density depends on the velocity u′. The term 2λ∆u′ is the internal material
damping of Kelvin-Voigt type of the structure. And also the model in hand,
with Balakrishnan-Taylor damping(σ > 0) and ρ = 1, was initially proposed
by Balakrishnan and Taylor[16] in 1989 and Bass and Zes [17]. On the other
hand, for the conditions ρ = 1, σ = 0, Kang[11] was worked in 2012. The
boundary conditions considered here are of mixed Dirichlet and Neumann type
and acoustic boundary. The analytical studies in the area of stabilization of
distributed parameter system is currently of interest in view of application to
vibration control of various structural elements. The phenomenon was first
observed by Hunton as reported by Harrison [9]. The nonlinear model like (1.1)
for transverse vibrations was originally derived by Kirchhoff [8]. Beale and
Rosencrans[13] introduced acoustic boundary conditions of the general form

∂u

∂ν
= y′ on Γ1 ×R+

γu′ +m(x)y′′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

Recently, wave equations with acoustic boundary conditions have been treated
by many authors([11],[13],[5],[1],[6],[10],[12],[3]). In [11], the authors studied the
nonlinear wave equations

u′′ −M(

∫
Ω

|u|2dx)∆u+ |u′|αu′ = 0 in Ω×R+,

u = 0 on Γ0 ×R+,

∂u

∂ν
= y′ on Γ1 ×R+,

γu′ +m(x)y′′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

They proved the existence of solutions, but did not give decay rate for solutions.
As regards uniform decay rates for solutions to problems with acoustic bound-
ary conditions, there are not much literature ([14],[11],[6],[10],[12]). Frota and
Larkin[6] established global solvability and decay estimates for a linear wave
equation with boundary conditions

∂u

∂ν
= h(x)y′ on Γ1 ×R+

γu′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

In this paper we are motivated by boundary conditions of Park[11] and results
of Gorain[7] and Kang[16][17]. The aim of this paper is to study stabilization of
the generalized nonlinear Kirchhoff type wave equations governed by (1.1)-(1.6)
with the mixed boundary conditions. To our knowledge, this problem has not
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been considered by predecessors and is studied first, as a Kirchhoff of kelvin-
Voigt type model, in this paper. The plan of this paper as follows. In section
2, we give some notation, some conditions and material needed for our work.
In section 3, we drive the stability on account of internal material damping of
Kelvin-Voigt type with Balakrishnan-Taylor damping and acoustic boundary.
The notation used in this paper is standard and can be found in Gorain[7] and
Kang [17].

2. Preliminaries and some notations

In this section, we present some notations and some material in the proof
of our result. Throughout this paper, we use the notation V = {u ∈ H1(Ω) :
u = 0 on Γ0} the subspace of the classical Sobolev space H1(Ω) of real valued
functions of order one. Let k be the smallest positive constant independent of
t (depends only on Ω) satisfying the Poincare inequality∫

Ω

u2dx ≤ k
∫

Ω

|∇u|2dx for every u ∈ V . (2.1)

And also let k be the smallest positive constant independent of t (depends only
on Γ1) satisfying the embedding inequality∫

Γ1

u2dΓ ≤ k
∫

Ω

|∇u|2dx for every u ∈ V . (2.2)

We assume that

ρ satisfies 0 < ρ ≤ n
n−2 , if n ≥ 3 or ρ > 0, if n = 1, 2. (2.3)

and since V ↪→ Lρ+2(Ω),

there exist a positive constant K such that ||u||ρ+2 ≤ K||∇u||2. (2.4)

For the functions p and q, we assume that p, q ∈ C(Γ1) and p(x) > 0 and
q(x) > 0 for all x ∈ Γ1. This assumption implies that there exist positive
constants pi, qi(i = 0, 1) such that

p0 ≤ p(x) ≤ p1, q0 ≤ q(x) ≤ q1 for all x ∈ Γ1. (2.5)

By using Gälerkin’s approximation and the methods of Gorain[7] and Park[12],
we can obtain the following existence result for the solution subject to (1.1)-
(1.6) under the conditions on p and q as above. For the initial data (u0, u1, y0) ∈
(V ∩H2(Ω))× V ×L2(Γ1), there exists a unique pair of functions (u, y), which
is a solution to the problem (1.1)-(1.6) in the class

u ∈ L∞(0, T ;V ×H2(Ω)), u′ ∈ L∞(0, T ;V ),

u′′ ∈ L∞(0, T ;L2(Ω)), y, y′ ∈ L2(0,∞;L2(Γ1)).
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In the order to state our main results, we define the energy of problem (1.1)-(1.6)
by

E(t) =
1

ρ+ 2

∫
Ω

|u′|ρ+2dx+
a2

2

∫
Ω

|∇u|2dx+
b

4
(

∫
Ω

|∇u|2dx)2+
1

2

∫
Γ1

q(x)(y)2dΓ.

(2.6)

3. Stability on account of internal damping of Kelvin-Voigt type

If we differentiate (2.6) with respect to t and use the governing Eq.(1.1) we
get

E′(t) =

∫
Ω

|u′|ρu′′u′dx+ a2

∫
Ω

∇u · ∇u′dx+ b

∫
Ω

||∇u||2∇u · ∇u′dx

+

∫
Γ1

q(x)yy′dΓ

=

∫
Ω

{(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

∇u · ∇u′dx)4u+ 2λ4u′}u′dx

+ a2

∫
Ω

∇u · ∇u′dx+ b

∫
Ω

||∇u||2∇u · ∇u′dx+

∫
Γ1

q(x)yy′dΓ.

Application of Green’s formula and using the boundary conditions (1.2)-(1.4)
and then a simplification, we get

E′(t) = −2λ

∫
Ω

|∇u′|2dx− σ(

∫
Ω

∇u · ∇u′dx)2 +

∫
Γ1

(u′ + q(x)y)y′dΓ

= −2δ

∫
Ω

|u′|2dx− σ(

∫
Ω

∇u · ∇u′dx)2 −
∫

Γ1

p(x)(y′)2dΓ < 0, ∀t ∈ R+.

(3.1)

We see from (3.1) that the energy E is a decreasing function of time and hence

E(t) ≤ E(0) ∀t ≥ 0, (3.2)

where

E(0) =
1

ρ+ 2

∫
Ω

|u1|ρ+2dx+
a2

2

∫
Ω

|∇u0|2dx+
b

4
(

∫
Ω

|∇u0|2dx)2

+
1

2

∫
Γ1

q(x)(y(x, 0))2dΓ.

Under what conditions does this energy E decay with time uniformly? An
affirmative answer is contained in the following theorem.

Theorem 3.1. If u = u(x, t) is a regular solution of the system (1.1)-(1.6)
with initial values (u0, u1, y0) ∈ V × L2(Ω) × L2(Γ1), then the energy E(t) of
the system defined by (2.6) satisfies

E(t) < Me−µtE(0), t ∈ (0,∞)

for some real constants M > 1(3.25) and µ > 0(3.22).
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Firstly, we need to prove the following lemma.

Lemma 3.2. For every solution u = u(x, t) of the system (1.1)-(1.6), the time
derivative of the functional Ψ defined by

Ψ(t) =
1

ρ+ 1

∫
Ω

|u′|ρu′udx+ λ

∫
Ω

|∇u|2dx+
σ

4
(

∫
Ω

|∇u|2dx)2

+

∫
Γ1

uydΓ +
1

2

∫
Γ1

p(x)y2dΓ (3.3)

satisfies

Ψ′(t) ≤ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ (3.4)

−a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · u′dx)2, t ∈ R+.

Proof. If we differentiate (3.3) with respect to t and replace u′′ by the
relation (1.1), then we get

Ψ′(t) =

∫
Ω

|u′|ρu′′udx+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2λ

∫
Ω

∇u · ∇u′dx

+ σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

(u′y + uy′)dΓ +

∫
Γ1

p(x)yy′dΓ

=

∫
Ω

{(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

|∇u|2dx)4u+ 2λ4u′}udx

+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2λ

∫
Ω

∇u · ∇u′dx

+ σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ.

Applying Green’s formula and boundary conditions, we have

Ψ′(t) =

∫
Γ1

{(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

|∇u|2dx)
∂u

∂ν
+ 2λ

∂u′

∂ν
}udΓ

− (a2 + b

∫
Ω

|∇u|2dx)

∫
Ω

|∇u|2dx

− σ(

∫
Ω

|∇u|2dx)2 + σ(

∫
Ω

|∇u|2dx)(

∫
Ω

∇u · ∇u′dx)

+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx+

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ. (3.5)
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Using the boundary conditions(1.5),(1.6) and Young’s inequality, relation
(3.5) can be written as

Ψ′(t) =
1

ρ+ 1

∫
Ω

|u′|ρ+2dx− a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2

− σ(

∫
Ω

|∇u|2dx)2 + σ(

∫
Ω

|∇u|2dx)(

∫
Ω

∇u · ∇u′dx)

+ 2

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ.

≤ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ

− a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · ∇u′dx)2, ∀t ∈ R+.

Hence the proof of lemma complete. �
Proof of Theorem 1. We introduce a modified energy like Lyapunov func-

tional V by

V (t) = E(t) + εΨ(t) for t ≥ 0. (3.6)

Now, using the Cauchy-Schwarz’s inequality, the Hölder inequality, Young’s
inequality, the Poincare inequality (2.1)-(2.4) and the defined of energy (2.6),
we obtain estimate as follow

| 1

ρ+ 1

∫
Ω

|u′|ρu′udx| ≤ 1

ρ+ 1

∫
Ω

|u′|ρ+1|u|dx

≤ 1

ρ+ 1
(

∫
Ω

|u′|ρ+2dx)
ρ+1
ρ+2 (

∫
Ω

|u|ρ+2dx)
1

ρ+2

≤ 1

ρ+ 2

∫
Ω

|u′|ρ+2dx+
1

(ρ+ 1)(ρ+ 2)

∫
Ω

|u|ρ+2dx

≤ 1

ρ+ 2
||u′||ρ+2

ρ+2 +
Kρ+2

(ρ+ 1)(ρ+ 2)
||∇u||ρ+2

≤ 1

ρ+ 2
||u′||ρ+2

ρ+2 +
Kρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)

ρ
2 ||∇u||2

≤{1 +
Kρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)

ρ
2

2

a2
}E(t), (3.7)

0 ≤ λ
∫

Ω

|∇u|2dx ≤ 2λ

a2
E(t), (3.8)

|
∫

Γ1

uydΓ| ≤
∫

Γ1

1

2q(x)
u2dΓ +

1

2

∫
Γ1

q(x)y2dΓ

≤ k̄

2q0

∫
Ω

|∇u|2dx+
1

2

∫
Γ1

q(x)y2dΓ ≤ (
k̄

a2q0
+ 1)E(t), (3.9)
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and

1

2

∫
Γ1

p(x)y2dΓ ≤ p1

2q0

∫
Γ1

q(x)y2dΓ ≤ p1

q0
E(t). (3.10)

and

σ

4
(

∫
Ω

|∇u|2dx)2dx ≤ σ

b
E(t). (3.11)

Thus the inequality (3.7)-(3.11) and (3.3) yield for Ψ that estimates

− [2 +
2Kρ+2

a2(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)ρ/2 +

k̄

a2q0
]E(t) ≤ G(t)

≤ [2 +
2Kρ+2

a2(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)ρ/2 +

2λ

a2
+

k̄

a2q0
+
p1

q0
+
σ

b
]E(t). (3.12)

Then it follows from (3.12) that

{1− εM1)}E(t) ≤ V (t) ≤ {1 + εM2}E(t) ∀t ≥ 0, (3.13)

where we assume that

0 < ε <
1

M1
,

so that left hand side of (3.13) is positive. Here

M1 := 2 +
2Kρ+2

a2(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)

ρ
2 +

k̄

a2q0
> 0

and

M2 := 2 +
2Kρ+2

a2(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)

ρ
2 +

2λ

a2
+

k̄

a2q0
+
p1

q0
+
σ

b
> 0.

Next, differentiating V (t)(defined by (3.6)) with respect to t using expression
E′(t)(defined by (3.1)) and Lemma 3.1, we have

V ′(t) ≤− σ(

∫
Ω

∇u · ∇u′dx)2 − 2λ

∫
Ω

|∇u′|2dx−
∫

Γ1

p(x)(y′)2dΓ (3.14)

+ ε{ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ

− a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · ∇u′dx)2}.
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Now, using the Cauchy-Schwarz’s inequality,the Poincare inequality, the condi-
tions (2.2)-(2.3) and the definition of energy (2.6), we obtain estimate

|2ε
∫

Γ1

uy′dx| ≤
∫

Γ1

p(x)(y′)2dΓ + ε2
∫

Γ1

1

p(x)
u2dΓ (3.15)

≤
∫

Γ1

p(x)(y′)2dΓ +
2k̄ε2

a2p0

a2

2

∫
Ω

|∇u|2dx

≤
∫

Γ1

p(x)(y′)2dΓ +
2k̄ε2

a2p0
E(t).

From (3.14)-(3.15), we have

V ′(t) ≤− σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2 − 2λ

∫
Ω

|∇u′|2dx

+
ε

ρ+ 1

∫
Ω

|u′|ρ+2dx+
2k̄ε2

a2p0
E(t)− ε

∫
Γ1

p(x)(y′)2dΓ

− a2ε

∫
Ω

|∇u|2dx− bε(
∫

Ω

|∇u|2dx)2

=− 2λ

∫
Ω

|∇u′|2dx+
ε(3ρ+ 4)

(ρ+ 1)(ρ+ 2)

∫
Ω

|u′|ρ+2dx

− σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2 − 2ε(1− k̄ε

a2p0
)E(t)− bε

2
(

∫
Ω

|∇u|2dx)2.

(3.16)

By the definition of energy (2.6), we note that

||u′||ρ+2
ρ+2 ≤ (ρ+ 2)E(0). (3.17)

By the inequality (3.17), we can take sufficiently small ε0 > 0 such that

0 < ε0 ≤
2λ(ρ+ 1)||∇u′||2

(3ρ+ 4)E(0)
. (3.18)

And also we can take sufficiently small ε satisfy

0 < ε < 4, 0 < ε <
a2p0

k̄
, 0 < ε ≤ ε0, (3.19)

since

||u′||ρ+2
ρ+2 ≤ (ρ+ 2)E(0), −2λ||∇u′||2 + ε0

3ρ+ 4

(ρ+ 1)(ρ+ 2)
||u′||ρ+2

ρ+2 ≤ 0.
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From(3.16)-(3.19), we obtain

V ′(t) ≤− 2ε(1− k̄ε

a2p0
)E(t)

− σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2 − bε

2
(

∫
Ω

|∇u|2dx)2

− (2λ

∫
Ω

|∇u′|2dx− ε(3ρ+ 4)

(ρ+ 1)(ρ+ 2)

∫
Ω

|u′|ρ+2dx)

<− 2ε(1− k̄ε

a2p0
)E(t), ∀t > 0,

where we assume that

0 < ε < min{4,M−1
1 ,

a2p0

k̄
, ε0}. (3.20)

With the help of (3.13), the above yields the differential inequality

V ′(t) + µV (t) < 0 ∀t ∈ R+, (3.21)

where

0 < µ =
2ε(a2p0 − k̄ε)
a2p0(1 + εM2)

. (3.22)

Multiplying (3.21) by eµt and integrating over the time interval [0, t], we get
the estimate

V (t) < e−µtV (0) ∀t ∈ R+. (3.23)

Invoking the inequality (3.13) again in (3.23), we have

E(t) < Me−µtE(0) ∀t ∈ R+, (3.24)

where

M =
1 + εM2

1− εM1
> 1. (3.25)

The finishes the proof of the theorem. �
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[8] G. Kirchhoff, Vorlesungen übear Mathematische Physik, Mechanik(Teubner) 1977.
[9] H. Harrison, Plane and circular motion of a string, J. Acoust. Soc. Am.20 (1948), 874-

875.

[10] J.Y. Park and J.A. Kim, Some nonlinear wave equations with nonlinear memory source
term and acoustic boundary conditions, Numer. Funct. Anal. Optim. 27 (2006), 889-903.

[11] J.Y. Park and S.H. Park, Decay rate estimates for wave equations of memory type with

acoustic boundary conditions, Nonlinear Analysis : Theory, methods and Applications
74 (2011), no. 3, 993-998.

[12] J.Y. Park and T.G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon
equation with damping term and acoustic boundary conditions, J. Math. Phys. 50 (2009)

Article No. 013506; doi:10.1063/1.3040185 .

[13] J.T. Beal and S.I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80
(1974), 1276-1278.

[14] M.A. Horn, Exact controllability and uniform stabilization of the Kirchhoff plate equation

with boundary feedback acting via bending moments, J. Math. Anal. Appl. 167 (1992),
557-581.

[15] R.W. Bass and D. Zes, Spillover, nonlinearity and flexible structures, The Fourth NASA

Workship on Computational Control of Flexible Aerospace Systems, NASA Conference
Publication 10065 (L.W. Taylor, ed.), 1991, 1-14.

[16] Y.H. Kang, Energy decay rate for the Kirchhoff type wave equation with acoustic bound-

ary condition, East Asian Mathematical Journal 28 (2012), no. 3, 339-345.
[17] Y.H. Kang, Energy decay rates for the Kelvin-Voigt type wave equation with acoustic

boundary condition, J. KSIAM. 16 (2012), no. 2, 85-91.

Institute of Liberal Education, Catholic University of Daegu, 330 Geumank-ri,
Hayang-eup, Gyeongsan-si Gyeongsan-si, Gyeongbuk 712-702, South Korea

E-mail address: yonghann@@cu.ac.kr


