• Title/Summary/Keyword: Kcal

Search Result 2,507, Processing Time 0.036 seconds

A Study on Ultrasonic Relaxation of Rotational Isomerism in Methy and Ethyl Formates using high - Q Ultrasonic Resonator Method (초음파 공명법에 의한 methyl과 ethyl formate의 회전 이성체에 대한 초음파 완화 현상의 연구)

  • 이명하
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.35-39
    • /
    • 1998
  • Methyl과 ethyl formate의 초음파 흡수계수를 0.15-2 MHz의 주파수 범위, 온도 5-3$0^{\circ}C$에 걸쳐 1MHz 이하에서 정확한 초음파 흡수측정이 가능한 광 회절 초음파 공명법을 이용하여 측정하였다.그 결과, cisdhk trans 에 의한 초음파 완화 현상은 전형적인 단일 완화현상을 보였고, 그 스페트럼으로부터 완화주파수와 완화강도를 결정할 수 있었다. 완화 주파수와 완화강도의 온도 의존성으로부터 활성화 에너지(ΔH#)와 에너지 차(ΔH)를 구하였다. 측정된 methyl과 ethyl formate의 활성화 에너지는 각각 9.8과 8.9kcal/mol 이었고, 에너지 차는 각각 2.3 과 2.2kcal/mol로 나타났다

  • PDF

DFT Study of Bis(Crown-Ether) Analogue of Troger’s Base Complexed with Bisammonium Ions: Hydrogen Bonds

  • Kim, Kwan-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1737-1740
    • /
    • 2006
  • The optimized structures and complexation energies of bis(18-crown-6-ether) analogue (2) of Trgers base (1) with a series of primary alkylbisammonium ions have been calculated by DFT B3LYP/6-31G(d,p) method. The calculated complexation efficiency (-142.84 kcal/mol) of 2 for butane-1,4-diylbisammonium guest is better than twice of the value (-61.40 kcal/mol) for butylammonium ion. The multiple hydrogen-bond abilities for the complexes are described as the function of the length of the alkyl substituents of the bisammonium guests with normal-alkyl chain [$-(CH_2)_{n-}$, n = 4-8]. The longer bisammonium guest shows the stronger hydrogen-bonding characterizations (the distance and the quasi-linear angle of the N-H…O) to the host 2 than the shorter bisammonium ions. These calculated results agree with the experimental data of the complexation of 2 with bisammonium salts ([$NH_3(CH_2)_nNH_3$] $Cl_2$).

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1657-1660
    • /
    • 2004
  • Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

Effect of Synthetic PGE-AcAm on the Reaction Rate of Epoxy System (합성된 PGE-AcAm이 에폭시 수지 계의 반응속도의 미치는 영향)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.644-650
    • /
    • 1996
  • Diglycidy1 ether of bisphenol A (DGEBA)/4,4'-methylene dianiline(MDA)계의 경화반응 속도에 미치는 pheny1 glycidy1 ether (PGE)-acetamide(AcAm)의 영향을 연구하였다. 반응성 첨가제로 사용된 PGE-AcAm는 PGE와 acetamide를 2:1의 몰 비로 혼합한 후 18$0^{\circ}C$에서 1시간 반응시켜서 합성하였으며, PGE의 에폭사이드기와 AcAm의 아민기가 반응함으로써 수산기를 형성함에 의해 진행되었다. 이 때 생성된 수산기는 DGEBA와 MDA의 반응에서 촉매로 작용하여 반응속도를 크게 활성화 에너지는 11.11 Kcal/mol이었고, 30 phr의 PGE-AcAm이 첨가된 계의 활성화 에너지는 7.91Kcal/mol이었다.

  • PDF

Local Structure Study of Liquid Phase Ethylene Glycol and 1,3-propanediol through Density Functional Theory

  • Nam, Seungsoo;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.140-146
    • /
    • 2016
  • Using density functional Theory, we studied local structure of liquid ethylene glycol and 1,3-propanediol. For both liquid, making intramolecular hydrogen bonding is not preferred, because relative energy between with and without intramolecular hydrogen bond is only -1.95kcal/mol, which is far less than intermolecular hydrogen bonding energy, about -7.5kcal/mol. Also, hydrogen bond induce polarization of hydroxyl group and make $2^{nd}$ hydrogen bond more stronger. This effect was small in intramolecular hydrogen bond of ethylene glycol. When considering energy per hydrogen bond, making only one intermolecular hydrogen bond for ethylene glycol pair is energetically favored, while two intermolecular hydrogen bond can be formed in 1,3-propanediol pair.

  • PDF

Experimental study on combustion characteristics of oxy-fuel glass melting furnace (순산소를 이용한 유리 용해로의 연소특성에 관한 실험적 연구)

  • Kim, Se-Won;Ahn, Jae-Hyun;Kim, Yong-Mo;Shin, Myung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The results of a series of experiments executed by using two pilot-scale oxy-fuel burners are presented. The oxy-fuel burners are designed for maximum capacity of 50,000kcal/hr, 200,000kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, and swirl vane angle on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple at various points of the flame. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and momentum. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, optimum burner type, excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

A Thermal Decomposition Characteristics of Propellants for Safety Bag (에어백용 가스발생제의 열분해 특성)

  • 이내우
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.97-106
    • /
    • 1996
  • Some of accidents are based on unstable chemical substances. These chemicals are easily decomposed or Ignited by heats or mechanical shocks like sodium azide. Sodium azide is commonly used as propellant for inflating automotive safety bags and the other chemical manufacturing purposes. The investigation of thermal hazard potential of sodium azide is very important because unexpected traffic accident can be occureed. The experiments were carried out by DSC, TG an ARC in air, oxygen, argon and nitrogen atmosphere. The decomposition temperatures were about $410^{\circ}C$~$420^{\circ}C$ by DSC and $330^{\circ}C$~$370^{\circ}C$ by ARC, this is very significant result for treatment of chemical. The heats of decomposition were about 81 kcal/mol in ai. and 10 kcal/mol in other atmosphere.

  • PDF

Manufacturing and Quality Characteristics of Low Calori Kimchi Noodle (저열량 김치국수의 제조 및 품질특성)

  • Kim, Hyong-Yol;Lim, Heung-Youl
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.3
    • /
    • pp.315-322
    • /
    • 2005
  • Kimchi noodle have a original taste and characteristics. This noodle was used for sour kimchi, kimchi taste powder, red bean fiber and emulsified oil etc. with RS(resistant starch) premix as blended wheat flour mixed to resistant starch. For manufacturing process of this kimchi mixed dry noodle, suitable kimchi of $pH3.70{\sim}3.80$ was required storage period during $4{\sim}5days$ at room temperature. At this point, the suitable treating amount of sour kimchi was about 20%(w/w) level. Manufacturing of kimchi noodle could be at the suitable manufacturing condition from use of kimchi taste powder and red bean fiber etc. Calori of this kimchi noodle was 308.17Kcal/100g as low level than wheat flour noodle as 355.82Kcal/100g, decreasing effect of calori was about 13.39%. This kimchi noodle had a characteristic sour and hot taste, that wasn't required the special seasoning and/or soup at this result.

Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate (Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe (황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구)

  • 이응조;노재호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF