• Title/Summary/Keyword: Karman 와

Search Result 20, Processing Time 0.02 seconds

Large Eddy Simulation of Turbulent flow around a Square Cylinder (대형 와 모사법 (LES)을 이용한 사각 실린더 주위의 난류 유동장 해석)

  • Chun, Ho-Hwan;Jung, Kwang-Hyo;Yoon, Hyun-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.675-682
    • /
    • 2006
  • This study has investigated the turbulent flow around a square cylinder by using LES (large eddy simulation). Numerical simulations are performed for turbulent flow fields with Re = 22,000. The computed results are in good agreement with existing computational and experimental data. The time-averaged and phase-averaged turbulent statistics around a square cylinder are discussed. Total 20 phase bins extracted from one cycle period showed detailed wake structures of the phase-averaged flow field. The center of Karman vortex sheets did not deviated ${\pm}0.5$ from centerline of square cylinder while moving downstream.

Study on the Thrust Generation of a Flat Plate in Heave Oscillation Using a Lattice-Boltzmann Method (격자볼츠만 법을 사용한 히브진동 운동하는 평판에서의 추력발생 연구)

  • An, Sang-Joon;Kim, Yong-Dae;Maeng, Joo-Sung;Lee, Jong-Shin;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.397-403
    • /
    • 2007
  • Insect and birds in nature flap their wings to generate fluid dynamic forces that are required for locomotion. To develop a feasible flapping MAV, it is of crucially important to study the fundamental relations between flapping motion and thrust generation. In this paper, the onset conditions of the thrust generation of a heaving flat plate is investigated using a Lattice-Boltzmann method. For a fixed heaving amplitude of h/C=0.5, the effect of reduced frequency on the thrust generation is investigated. For several values of heaving amplitude(h/C=0.25, 0.325, 0.50), the effect of reduced frequency on the thrust generation is also investigated. It can be said that Strouhal number is more important rather than reduced frequency in case of thrust generation. It is found that the critical Strouhal number over which the flat plate starts to produce thrust is around 0.1. Thrust is an exponential function of the Strouhal number.

Phase-Locked Three-Dimensional Structures in the Cylinder Wake Observed from Cinematic PIV Data (Cinematic PIV에 의한 실린더 후류의 위상평균된 3차원 구조)

  • Sung, Jae-Yong;Park, Kang-Kuk;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.661-666
    • /
    • 2000
  • Near-wake flow field of a circular cylinder is studied by means of a cinematic PIV system with high sampling rate and large internal memory block. Experiments are conducted in a closed-cycle water tunnel system and a cross-correlation algorithm in conjunction with FFT (Fast Fourier Transform) analysis and an offset correlation technique is used for vector processing. With the help of very high sampling frequency compared to the shedding frequency, it is possible to obtain phase-averaged information of the three-dimensional wake, even though the shedding is not forced but natural. Phase-locked vortical structures observed simultaneously from the spanwise and cross-stream planes are displayed in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength or around one diameter. Spatial relations and temporal evolutions of the primary Karman vortex and the secondary vortex are also discussed schematically.

  • PDF

A new design research on Pantograph Panhead, having a Hole characteristics (구멍 효과를 이용한 Pantograph Panhead 새로운 설계 연구)

  • Kim, Jae-In;Choe, Dae-Hyeon;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.579-584
    • /
    • 2014
  • 고속 열차의 속도가 점점 빨라짐에 따라 고속 열차 주행 시 발생하는 여러 공력적인 문제가 대두되고 있다. 그 중 고속 열차와 전력선을 이어주는 판토그래프에서의 소음 발생과 압상력 불안정 문제가 중요시 되어왔고 이에 대한 여러 선행연구가 진행되고 있다. 지금까지의 선행 연구는 원형, 사각형, 에어포일과 같이 기본적인 형상을 이용한 판토그래프 팬헤드의 최적 단면 형상을 찾는 데에 초점을 맞추고 있다. 본 연구는 이러한 주류의 접근 방식에서 벗어나 팬헤드에 구멍을 추가하여 그 효과를 보는 다양한 시도를 해보았고 구멍이 소음 발생과 압상력 불안정에 미치는 영향에 대하여 연구하였다.

  • PDF

PIV Measurement on the Flow Characteristics of a Sharp Plane with Inclined Angles (각도변화에 따른 Sharp Plane의 유동특성에 관한 PIV계측)

  • 최종웅;한종석;강호근;문종춘;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.28-33
    • /
    • 2001
  • Animation understanding and time-resolved analysis of the wake characteristic of 2-D sharp plane flows were executed by applying the multi-vision PIV to a sharp plane(three angle of attacks : $15^{\circ}, \; 30^{\circ}, \; 45^{\circ}$) submerged within a circulating water channel($Re = 2{\times}10^4$). The macroscopic shedding patterns were discussed in terms of instantaneous velocity, vorticity, velocity profile, kinetic energy, turbulent intensity, frequency analysis. Particularly, the time-averaged distribution of turbulent intensity in each experimental cases revealed separate island-like small regions magnitude of turbulent intensity was always strengthened.

  • PDF

Secondary Instability in the Wake of a Circular Cylinder (원주 후류에서의 2차적 불안정성)

  • KNAG S. J.;TANAHASHI M.;MIYAUCHI T.;LEE Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84-90
    • /
    • 2001
  • Secondary instability of flow past a circular cylinder is examined using direct numerical simulation at Reynolds number 220 and 250. The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. In x-y plane, the convection term is applied by the 5th order upwind scheme, and the pressure and viscosity terms are applied by the 4th order central difference. In spanwise, Navier-Stokes equation is distributed using Spectral Method. The critical Reynolds number for this instability is found to be about Re=190. The secondary instability leads re three-dimensionality with a spanwise wavelength about 4 cylinder diameters at onset (A-mode). Results of three-dimensional effect in wake of a circular cylinder are represented with spanwise and streamwise vorticity contours as Reynolds numbers.

  • PDF

Three-Dimensional Transition in the Wake of a Circular Cylinder By Direct Numerical Simulation (DNS에 의한 원주 후류에서의 3차원 천이)

  • Knag, S.J.;Tanahashi, M.;Miyauchi, T.;Mo, J.O.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.570-577
    • /
    • 2001
  • Three-dimensional time-dependent flow past a circular cylinder is numerically investigated using direct numerical simulation for Reynolds number 280 and 300. The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. In x-y plane, the convection term is applied by the 5th order upwind scheme and the pressure and viscosity terms are applied by the 4th order central difference. And in spanwise, Navier-Stokes equation is distributed using of Spectral Method. At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength about 1.0 diameters at onset (B-mode). Present results of three-dimensional effects of in wake of a circular cylinder is represented with spanwise and streamwise vorticity contours as Reynolds numbers.

  • PDF

Large-Eddy Simulation of Turbulent Flow Past a Square Cylinder Confined in a Channel (평판 사이 정방형실린더 주위의 난류 유동에 대한 LES)

  • Kim, Do-Hyeong;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.261-268
    • /
    • 2002
  • Turbulent flow past a square cylinder confined in a channel is numerically investigated by Large Eddy Simulation(LES). The main objectives of this study are to verify the experimental results of Nakagawa et al.[Exp. in Fluids, Vol. 27, 3, pp. 284∼294, 1999] by LES and to obtain related flow information in detail. The LES results obtained are in excellent agreement with the experiment both qualitatively and quantitatively. The passive paticles numerically released into the flow field clearly show the barman vortex street. However, the vortices shed from the cylinder are significantly affected by the presence of the plates. Futhermore, periodic and alternating vortex-rollups are observed in the vicinity of the plates. The rolled-up vortex is convected downstream together with the corresponding Karman vortex forming a counter-rotating vortex pair. It is also revealed that the cylinder greatly enhances mixing process of the flow.

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

The Flow Control by a Horizontal Splitter Plate for a Square Prism near a Wall (벽면에 근처에 놓인 정방형주의 수평 분리판에 의한 유동 제어)

  • Ro, Ki-Deok;Lee, Sang-Jun;Lee, Gyeong-Yun;Jang, Jae-Dong;Jung, Yong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.625-631
    • /
    • 2011
  • The passive control of fluid force acting on a square prism near a plane wall was studied by attaching horizontal splitter plate on the corner of the prism. The width of the splitter plate was 10% of the square width. The experiments were performed by measuring of fluid force on the prism and by visualization of the flow field using PIV. The experimental parameters were the attaching position and the space ratios G/B between the prism and wall. The flow between the prism and wall was remarkable and Karman vortex in the wake of the prism was considerable in the space ratio over 0.4. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4 for the prototype prism and G/B=0.6 for the prism having horizontal splitter plate. The drag of the prism was reduced average 4.5% with the space ratios by attaching the horizontal splitter plate at the rear and lower corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism without the splitter plate.