• 제목/요약/키워드: Kareniaceae

검색결과 4건 처리시간 0.017초

Newly recorded unarmored dinoflagellates in the family Kareniaceae(Gymnodiniales, Dinophyceae) in brackish and coastal waters of Korea

  • Cho, Minji;Choi, Hojoon;Nam, Seung Won;Kim, Sunju
    • 환경생물
    • /
    • 제39권2호
    • /
    • pp.236-244
    • /
    • 2021
  • Unarmored dinoflagellates, in the family Kareniaceae, include harmful or toxic bloom-forming species, which are associated with massive fish kills and mortalities of marine organisms worldwide. The occurrence and distribution of the toxigenic species in the family Kareniaceae were investigated in the brackish and coastal waters of Korea between July 2018 and October 2020. During the survey, we collected seven newly recorded species; Karenia papilionacea, Karlodinium digitatum, Karl. veneficum, Karl. zhouanum, Takayama acrotrocha, T. helix, and T. tasmanica. A total of fifteen strains of the seven taxa were successfully established as clonal cultures and examined using LM, SEM, and molecular phylogeny inferred from LSU rDNA sequences. Herein, we present the taxonomic information, morphological features, and molecular phylogenetic positions of the unrecorded dinoflagellate species collected from Korean coastal waters.

Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates

  • Ok, Jin Hee;Jeong, Hae Jin;Kang, Hee Chang;Park, Sang Ah;Eom, Se Hee;You, Ji Hyun;Lee, Sung Yeon
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.263-283
    • /
    • 2021
  • To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative real-time polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7-26.4℃ and 9.9-35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator-1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.

Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: II. Effects of temperature and global warming

  • Ok, Jin Hee;Jeong, Hae Jin;Kang, Hee Chang;Park, Sang Ah;Eom, Se Hee;You, Ji Hyun;Lee, Sung Yeon
    • ALGAE
    • /
    • 제37권1호
    • /
    • pp.49-62
    • /
    • 2022
  • Water temperature affects plankton survival and growth. The dinoflagellate Shimiella gracilenta survives using the plastids of ingested prey, indicating kleptoplastidy. However, studies on the effects of water temperature on kleptoplastidic dinoflagellates are lacking. We explored the growth and ingestion rates of S. gracilenta as a function of water temperature. Furthermore, using data on its spatiotemporal distribution in Korean coastal waters during 2015-2018, we predicted its distribution under elevated temperature conditions of +2, +4, and +6℃. Growth rates of S. gracilenta with and without Teleaulax amphioxeia prey as well as ingestion rates were significantly affected by water temperature. Growth rates of S. gracilenta with and without prey were positive or zero at 5-25℃ but were negative at ≥30℃. The maximum growth rate of S. gracilenta with T. amphioxeia was 0.85 d-1, achieved at 25℃, and 0.21 d-1 at 20℃ without prey. The ingestion rate of S. gracilenta on T. amphioxeia at 25℃ (0.05 ng C predator-1 d-1) was greater than that at 20℃ (0.04 ng C predator-1 d-1). Thus, feeding may shift the optimal temperature for the maximum growth rate of S. gracilenta from 20 to 25℃. In spring and winter, the distributions of S. gracilenta under elevated temperature conditions were predicted not to differ from those during 2015-2018. However, S. gracilenta was predicted not to survive at some additional stations under elevated temperature conditions of +2, +4, and +6℃ in summer or under elevated temperature conditions of +6℃ in autumn. Therefore, global warming may affect the distribution of S. gracilenta.

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • 제38권1호
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.