Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.11.28

Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates  

Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lee, Sung Yeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Publication Information
ALGAE / v.36, no.4, 2021 , pp. 263-283 More about this Journal
Abstract
To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative real-time polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7-26.4℃ and 9.9-35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator-1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.
Keywords
abundance; feeding; Gymnodinium gracilentum; Kareniaceae; protist; qPCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S. H., Lee, S. H., Ha, J. H. & Yih. W. H. 2005b. Feeding by the mixotrophic dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol. 38:249-257.   DOI
2 Johnson, M. D. 2011. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth. Res. 107:117-132.   DOI
3 Kang, H. C., Jeong, H. J., Lim, A. S., Ok, J. H., You, J. H., Park, S. A., Lee, S. Y. & Eom, S. H. 2020. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species. Algae 35:263-275.   DOI
4 Kibbe, W. A. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35:W43-W46.   DOI
5 Kim, J. S., Jeong, H. J., Yoo, Y. D., Kang, N. S., Kim, S. K., Song, J. Y., Lee, M. J., Kim, S. T., Kang, J. H., Seong, K. A. & Yih, W. H. 2013. Red tides in Masan Bay, Korea, in 2004-2005: III. Daily variations in the abundance of mesozooplankton and their grazing impacts on red-tide organisms. Harmful Algae 30(Suppl. 1):S102-S113.   DOI
6 Lim, A. S., Jeong, H. J., Ok, J. H. & Kim, S. J. 2018. Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae). Harmful Algae 74:19-29.   DOI
7 Lin, S., Zhang, H. & Dubois, A. 2006. Low abundance distribution of Pfiesteria piscicida in Pacific and Western Atlantic as detected by mtDNA-18S rDNA real-time polymerase chain reaction. J. Plankton Res. 28:667-681.   DOI
8 Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761.   DOI
9 Martin, J. R. & Gypens, N. 2021. Temperate waters: NCM succession and spatial variability in The North Sea revealed by DNA metabarcoding. In Mitra, A., Hansen, P. J. & Flynn, K. J. (Eds.) Report of Seasonal Distribution of Non-constitutive Mixoplankton across Arctic, Temperate and Mediterranean Coastal Waters. Zenodo, pp. 21-30.
10 Ok, J. H., Jeong, H. J., Lim, A. S. & Lee, K. H. 2017. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists. Harmful Algae 68:178-191.   DOI
11 Mathot, S., Smith, W. O. Jr., Carlson, C. A., Garrison, D. L., Gowing, M. M. & Vickers, C. L. 2000. Carbon partitioning within Phaeocystis antarctica (Prymnesiophyceae) colonies in the Ross Sea, Antarctica. J. Phycol. 36:1049-1056.   DOI
12 Drira, Z., Hamza, A., Belhassen, M., Ayadi, H., Bouain, A. & Aleya, L. 2008. Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Sci. Mar. 72:59-71.
13 Cloern, J. E., Alpine, A. E., Cole, B. E., Wong, R. L. J., Arthur, J. F. & Ball, M. D. 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuar. Coast. Shelf Sci. 16:415-429.   DOI
14 de Sousa, M. I. L. 2020. Biogeography of Arctic Eukaryotic Microbiome: A comparative approach between 18S rRNA gene metabarcoding and microscopic analysis. M.S. dissertation, University of Porto, Porto, Portugal, 94 pp.
15 Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396.   DOI
16 Burkholder, J. M., Glasgow, H. B. & Deamer-Mella, N. 2001. Overview and present status of the toxic Pfiesteria complex (Dinophyceae). Phycologia 40:186-214.   DOI
17 Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409.   DOI
18 Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H. & Park, E. C. 2021. Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists. Front. Mar. Sci. 8:738547.   DOI
19 Ok, J. H., Jeong, H. J., You, J. H., Kang, H. C., Park, S. A., Lim, A. S., Lee, S. Y. & Eom, S. H. 2021b. Phytoplankton bloom dynamics in incubated natural seawater: predicting bloom magnitude and timing. Front. Mar. Sci. 8:681252.   DOI
20 Ou, L., Lundgren, V., Lu, S. & Graneli, E. 2014. The effect of riverine dissolved organic matter and other nitrogen forms on the growth and physiology of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. J. Sea Res. 85:499-507.   DOI
21 Peterson, D. H. & Festa, J. F. 1984. Numerical simulation of phytoplankton productivity in partially mixed estuaries. Estuar. Coast. Shelf Sci. 19:563-589.   DOI
22 Schnepf, E. & Elbrachter, M. 1992. Nutritional strategies in dinoflagellates: a review with emphasis on cell biological aspects. Eur. J. Protistol. 28:3-24.   DOI
23 Schnepf, E. & Elbrachter, M. 1999. Dinophyte chloroplasts and phylogeny: a review. Grana 38:81-97.   DOI
24 Sellers, C. G., Gast, R. J. & Sanders, R. W. 2014. Selective feeding and foreign plastid retention in an antarctic dinoflagellate. J. Phycol. 50:1081-1088.   DOI
25 Zhang, Q., Yu, R., Song, J., Yan, T., Wang, Y. & Zhou, M. 2011. Will harmful dinoflagellate Karenia mikimotoi grow phagotrophically? Chin. J. Oceanol. Limnol. 29:849-859.   DOI
26 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
27 Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126.   DOI
28 Back, D. -Y., Ha, S. -Y., Else, B., Hanson, M., Jones, S. F., Shin, K. -H., Tatarek, A., Wiktor, J. M., Cicek, N., Alam, S. & Mundy, C. J. 2021. On the impact of wastewater effluent on phytoplankton in the Arctic coastal zone: a case study in the Kitikmeot Sea of the Canadian Arctic. Sci. Total Environ. 764:143861.   DOI
29 Baek, S. H., Shimode, S., Han, M. -S. & Kikuchi, T. 2008a. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae 7:729-739.   DOI
30 You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A., & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78.   DOI
31 Stat, M., Morris, E. & Gates, R. D. 2008. Functional diversity in coral-dinoflagellate symbiosis. Proc. Natl. Acad. Sci. U. S. A. 105:9256-9261.   DOI
32 Skovgaard, A. 1998. Role of chloroplast retention in a marine dinoflagellate. Aquat. Microb. Ecol. 15:293-301.   DOI
33 Ok, J. H., Jeong, H. J., Lim, A. S., You, J. H., Kang, H. C., Kim, S. J. & Lee, S. Y. 2019. Effects of light and temperature on the growth of Takayama helix (Dinophyceae): mixotrophy as a survival strategy against photoinhibition. J. Phycol. 55:1181-1195.   DOI
34 Baek, S. H., Shimode, S. & Kikuchi, T. 2008b. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of temperature, light intensity and photoperiod. Harmful Algae 7:163-173.   DOI
35 Bockstahler, K. R. & Coats, D. W. 1993. Spatial and temporal aspects of mixotrophy in Chesapeake Bay dinoflagellates. J. Eukaryot. Microbiol. 40:49-60.   DOI
36 Booth, B. C. & Smith, W. O. Jr. 1997. Autotrophic flagellates and diatoms in the Northeast Water Polynya, Greenland: summer 1993. J. Mar. Syst. 10:241-261.   DOI
37 Yoo, Y. D., Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101.   DOI
38 Eom, S. H., Jeong, H. J., Ok, J. H., Park, S. A., Kang, H. C., You, J. H., Lee, S. Y., Yoo, Y. D., Lim, A. S. & Lee, M. J. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36.   DOI
39 Ok, J. H., Jeong, H. J., Lee, S. Y., Park, S. A. & Noh, J. H. 2021a. Shimiella gen. nov. and Shimiella gracilenta sp. nov. (Dinophyceae, Kareniaceae), a kleptoplastidic dinoflagellate from Korean waters and its survival under starvation. J. Phycol. 57:70-91.   DOI
40 Raven, J. A., Beardall, J., Flynn, K. J. & Maberly, S. C. 2009. Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. J. Exp. Bot. 60:3975-3987.   DOI
41 Guillard, R. R. L. & Hargraves, P. E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234-236.   DOI
42 Gast, R. J., Moran, D. M., Dennett, M. R. & Caron, D. A. 2007. Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ. Microbiol. 9:39-45.   DOI
43 Gimez, M. I., Piola, A. R., Kattner, G. & Alder, V. A. 2011. Biomass of autotrophic dinoflagellates under weak vertical stratification and contrasting chlorophyll levels in subantarctic shelf waters. J. Plankton Res. 33:1304-1310.   DOI
44 Golubkov, M., Nikulina, V. & Golubkov, S. 2019. Effects of environmental variables on midsummer dinoflagellate community in the Neva Estuary (Baltic Sea). Oceanologia 61:197-207.   DOI
45 Hernandez-Becerril, D. U., Lau, W. L. S., Hii, K. S., Leaw, C. P., Varona-Cordero, F. & Lim, P. T. 2018. Abundance and distribution of the potentially toxic thecate dinoflagellate Alexandrium tamiyavanichii (Dinophyceae) in the Central Mexican Pacific, using the quantitative PCR method. Front. Mar. Sci. 5:366.   DOI
46 Jang, S. H. & Jeong, H. J. 2020. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations. Algae 35:45-59.   DOI
47 Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81.   DOI
48 Matsubara, T., Nagasoe, S., Yamasaki, Y., Shikata, T., Shimasaki, Y., Oshima, Y. & Honjo, T. 2007. Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exp. Mar. Biol. Ecol. 342:226-230.   DOI
49 Schnepf, E. 1992. From prey via endosymbiont to plastid: comparative studies in dinoflagellates. In Lewin, R. A. (Ed.) Origins of Plastids: Symbiogenesis, Prochlorophytes, and the Origins of Chloroplasts. Springer, Boston, MA, pp. 53-76.
50 Verity, P. G., Stoecker, D. K., Sieracki, M. E., Burkill, P. H., Edwards, E. S. & Tronzo, C. R. 1993. Abundance, biomass and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. Deep Sea Res. II Top. Stud. Oceanogr. 40:227-244.
51 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
52 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010b. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
53 Gast, R. J., Moran, D. M., Beaudoin, D. J., Blythe, J. N., Dennett, M. R. & Caron, D. A. 2006. Abundance of a novel dinoflagellate phylotype in the Ross Sea, Antarctica. J. Phycol. 42:233-242.   DOI
54 Glibert, P. M., Burkholder, J. M., Kana, T. M., Alexander, J., Skelton, H. & Shilling, C. 2009. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55:17-30.   DOI
55 Hansen, P. J. 1991b. Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73:253-261.   DOI
56 Jeong, H. J., Ha, J. H., Park, J. Y., Kim, J. H., Kang, N. S., Kim, S., Kim, J. S., Yoo, Y. D. & Yih, W. H. 2006. Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes and fish blood cells. Aquat. Microb. Ecol. 44:263-278.   DOI
57 Diaz, P., Molinet, C., Caceres, M. A. & Valle-Levinson, A. 2011. Seasonal and intratidal distribution of Dinophysis spp. in a Chilean fjord. Harmful Algae 10:155-164.   DOI
58 Larsen, J. 1994. Unarmoured dinoflagellates from Australian waters I. The genus Gymnodinium (Gymnodiniales, Dinophyceae). Phycologia 33:24-33.   DOI
59 Lee, K. H., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H. & Park, S. A. 2019a. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34:237-251.   DOI
60 Cohu, S., Thibaut, T., Mangialajo, L., Labat, J. -P., Passafiume, O., Blanfune, A., Simon, N., Cottalorda, J. -M. & Lemee, R. 2011. Occurrence of the toxic dinoflagellate Ostreopsis cf. ovata in relation with environmental factors in Monaco (NW Mediterranean). Mar. Pollut. Bull. 62:2681-2691.   DOI
61 de Salas, M. F., Bolch, C. J. S. & Hallegraeff, G. M. 2005. Karlodinium australe sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate from lagoonal habitats of south-eastern Australia. Phycologia 44:640-650.   DOI
62 Fraga, S., Rodriguez, F., Bravo, I., Zapata, M. & Maranon, E. 2012. Review of the main ecological features affecting benthic dinoflagellate blooms. Cryptogam. Algol. 33:171-179.   DOI
63 Larsen, J. 1988. An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366-377.   DOI
64 Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189.   DOI
65 Johnson, M. D., Stoecker, D. K. & Marshall, H. G. 2013. Seasonal dynamics of Mesodinium rubrum in Chesapeake Bay. J. Plankton Res. 35:877-893.   DOI
66 Kang, N. S., Jeong, H. J., Yoo, Y. D., Yoon, E. Y., Lee, K. H., Lee, K. & Kim, G. 2011. Mixotrophy in the newly described phototrophic dinoflagellate Woloszynskia cincta from western Korean waters: feeding mechanism, prey species and effect of prey concentration. J. Eukaryot. Microbiol. 58:152-170.   DOI
67 Lee, S. Y., Jeong, H. J., Ok, J. H., Kang, H. C. & You, J. H. 2020. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters. Algae 35:225-236.   DOI
68 Li, A., Stoecker, D. K. & Adolf, J. E. 1999. Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat. Microb. Ecol. 19:163-176.   DOI
69 Lee, S. Y., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H., Park, S. A. & Eom, S. H. 2021. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters. Algae 36:37-50.   DOI
70 Li, A., Stoecker, D. K. & Coats, D. W. 2000. Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy. J. Plankton Res. 22:2105-2124.   DOI
71 Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99.   DOI
72 Hansen, P. J. 1991a. Dinophysis: a planktonic dinoflagellate genus which can act both as a prey and a predator of a ciliate. Mar. Ecol. Prog. Ser. 69:201-204.   DOI
73 Hattenrath-Lehmann, T. & Gobler, C. J. 2015. The contribution of inorganic and organic nutrients to the growth of a North American isolate of the mixotrophic dinoflagellate, Dinophysis acuminata. Limnol. Oceanogr. 60:1588-1603.   DOI
74 Hehenberger, E., Gast, R. J. & Keeling, P. J. 2019. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl. Acad. Sci. 116:17934-17942.   DOI
75 Berge, T., Hansen, P. J. & Moestrup, O. 2008. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:279-288.   DOI
76 Campbell, P. H. 1973. The phytoplankton of Gales Creek with emphasis on the taxonomy and ecology of estuarine phytoflagellates. Ph.D. dissertation, University of North Carolina, Chapel Hill, NC, USA, 354 pp.
77 Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. W. & Yih, W. H. 2005a. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150.   DOI
78 Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106.   DOI
79 Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S. & Lee, K. 2011. Feeding by the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense. J. Eukaryot. Microbiol. 58:511-524.   DOI
80 Smalley, G. W. & Coats, D. W. 2002. Ecology of the red-tide dinoflagellate Ceratium furca: distribution, mixotrophy, and grazing impact on ciliate populations of Chesapeake Bay. J. Eukaryot. Microbiol. 49:63-73.   DOI
81 Unrein, F., Gasol, J. M., Not, F., Forn, I. & Massana, R. 2014. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 8:164-176.   DOI
82 Lee, S. Y., Jeong, H. J., Kwon, J. E., You, J. H., Kim, S. J., Ok, J. H., Kang, H. C. & Park, J. Y. 2019b. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea. Algae 34:7-21.   DOI
83 Smayda, T. J. & Reynolds, C. S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49:95-106.   DOI
84 Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311-335.   DOI
85 Strathmann, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12:411-418.   DOI
86 Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI
87 Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418.   DOI
88 Tillmann, U. & Reckermann, M. 2002. Dinoflagellate grazing on the raphidophyte Fibrocapsa japonica. Aquat. Microb. Ecol. 26:247-257.   DOI
89 Yang, H., Hu, Z., Shang, L., Deng, Y. & Tang, Y. Z. 2020. A strain of the toxic dinoflagellate Karlodinium veneficum isolated from the East China Sea is an omnivorous phagotroph. Harmful Algae 93:101775.   DOI
90 Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, G. & Kim, J. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158.   DOI
91 Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021a. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214.   DOI
92 Jakobsen, H. H., Hansen, P. J. & Larsen, J. 2000. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar. Ecol. Prog. Ser. 201:121-128.   DOI
93 Jang, S. H., Jeong, H. J., Kwon, J. E. & Lee, K. H. 2017. Mixotrophy in the newly described dinoflagellate Yihiella yeosuensis: a small, fast dinoflagellate predator that grows mixotrophically, but not autotrophically. Harmful Algae 62:94-103.   DOI
94 Jeong, H. J., Ha, J. H., Yoo, Y. D., Park, J. Y., Kim, J. H., Kang, N. S., Kim, T. H., Kim, H. S. & Yih, W. H. 2007. Feeding by the Pfiesteria-like heterotrophic dinoflagellate Luciella masanensis. J. Eukaryot. Microbiol. 54:231-241.   DOI
95 Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41.   DOI
96 Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010a. Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquat. Microb. Ecol. 59:239-255.   DOI
97 Jeong, H. J., Yoo, Y. D., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S. & Yih, W. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. J. Eukaryot. Microbiol. 51:563-569.   DOI
98 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
99 Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815.   DOI
100 Jeong, H. J., Yoo, Y. D, Lee, K., Kang, H. C., Kim, J. S. & Kim, K. Y. 2021b. Annual carbon retention of a marine-plankton community in the eutrophic Masan Bay, based on daily measurements. Mar. Biol. 168:69.   DOI
101 Al-Mutairi, M., Subrahmanyam, M. N. V., Ali, M., Isath, S., AlAwadi, M. A., Kumar, P. N., Al-Hebini, K. & Omar, S. A. S. 2020. Temporal variations in abundance and species richness of phytoplankton with emphasis on diatoms in the subtidal waters of Umm Al-Namil Island, northwestern Arabian Gulf of the ROPME Sea Area. J. Environ. Biol. 41:1470-1485.   DOI