• Title/Summary/Keyword: Karatsuba-Ofman algorithm

Search Result 7, Processing Time 0.019 seconds

An Efficient Architecture for Modified Karatsuba-Ofman Algorithm (불필요한 연산이 없는 카라슈바 알고리즘과 하드웨어 구조)

  • Chang Nam-Su;Kim Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.33-39
    • /
    • 2006
  • In this paper we propose the Modified Karatsuba-Ofman algorithm for polynomial multiplication to polynomials of arbitrary degree. Leone proposed optimal stop condition for iteration of Karatsuba-Ofman algorithm(KO). In this paper, we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA) with removing redundancy operations, and design a parallel hardware architecture based on the proposed algorithm. Comparing with existing related Karatsuba architectures with the same time complexity, the proposed architecture reduces the area complexity. Furthermore, the space complexity of the proposed multiplier is reduced by 43% in the best case.

A New Low Complexity Multi-Segment Karatsuba Parallel Multiplier over $GF(2^n)$ (유한체 $GF(2^n)$에서 낮은 공간복잡도를 가지는 새로운 다중 분할 카라슈바 방법의 병렬 처리 곱셈기)

  • Chang Nam-Su;Han Dong-Guk;Jung Seok-Won;Kim Chang Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • The divide-and-conquer method is efficiently used in parallel multiplier over finite field $GF(2^n)$. Leone Proposed optimal stop condition for iteration of Karatsuba-Ofman algerian(KOA). Ernst et al. suggested Multi-Segment Karatsuba(MSK) method. In this paper, we analyze the complexity of a parallel MSK multiplier based on the method. We propose a new parallel MSK multiplier whose space complexity is same to each other. Additionally, we propose optimal stop condition for iteration of the new MSK method. In some finite fields, our proposed multiplier is more efficient than the KOA.

A High-Performance ECC Processor Supporting Multiple Field Sizes over GF(p) (GF(p) 상의 다중 체 크기를 지원하는 고성능 ECC 프로세서)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.419-426
    • /
    • 2021
  • A high-performance elliptic curve cryptography processor (HP-ECCP) was designed to support five field sizes of 192, 224, 256, 384 and 521 bits over GF(p) defined in NIST FIPS 186-2, and it provides eight modes of arithmetic operations including ECPSM, ECPA, ECPD, MA, MS, MM, MI and MD. In order to make the HP-ECCP resistant to side-channel attacks, a modified left-to-right binary algorithm was used, in which point addition and point doubling operations are uniformly performed regardless of the Hamming weight of private key used for ECPSM. In addition, Karatsuba-Ofman multiplication algorithm (KOMA), Lazy reduction and Nikhilam division algorithms were adopted for designing high-performance modular multiplier that is the core arithmetic block for elliptic curve point operations. The HP-ECCP synthesized using a 180-nm CMOS cell library occupied 620,846 gate equivalents with a clock frequency of 67 MHz, and it was evaluated that an ECPSM with a field size of 256 bits can be computed 2,200 times per second.

A High Performance Modular Multiplier for ECC (타원곡선 암호를 위한 고성능 모듈러 곱셈기)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.961-968
    • /
    • 2020
  • This paper describes a design of high performance modular multiplier that is essentially used for elliptic curve cryptography. Our modular multiplier supports modular multiplications for five field sizes over GF(p), including 192, 224, 256, 384 and 521 bits as defined in NIST FIPS 186-2, and it calculates modular multiplication in two steps with integer multiplication and reduction. The Karatsuba-Ofman multiplication algorithm was used for fast integer multiplication, and the Lazy reduction algorithm was adopted for reduction operation. In addition, the Nikhilam division algorithm was used for the division operation included in the Lazy reduction. The division operation is performed only once for a given modulo value, and it was designed to skip division operation when continuous modular multiplications with the same modulo value are calculated. It was estimated that our modular multiplier can perform 6.4 million modular multiplications per second when operating at a clock frequency of 32 MHz. It occupied 456,400 gate equivalents (GEs), and the estimated clock frequency was 67 MHz when synthesized with a 180-nm CMOS cell library.

Efficient Modular Multiplication for 224-bit Prime Field (224비트 소수체에서 효율적인 모듈러 곱셈)

  • Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.515-518
    • /
    • 2019
  • The performance of Elliptic Curves Cryptosystem(ECC) is dominated by the modular multiplication since the elliptic curve scalar multiplication consists of the modular multiplication in projective coordinates. In this paper, we propose a new method that combines the Karatsuba-Ofman multiplication method and a new modular reduction algorithm in order to improve the performance of the modular multiplication for NIST p224 in the FIPS 186-4 standard. The proposed method leads to a running time improvement for computing the modular multiplication about 25% faster than the previous methods. The results also show that the method can reduce the arithmetic complexity by half when compared with traditional implementations on the standpoint of the modular reduction.

Efficient Polynomial Multiplication in Extension Field GF($p^n$) (확장체 GF($p^n$)에서 효율적인 다항식 곱셈 방법)

  • Chang Namsu;Kim Chang Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.23-30
    • /
    • 2005
  • In the construction of an extension field, there is a connection between the polynomial multiplication method and the degree of polynomial. The existing methods, KO and MSK methods, efficiently reduce the complexity of coefficient-multiplication. However, when we construct the multiplication of an extension field using KO and MSK methods, the polynomials are padded with necessary number of zero coefficients in general. In this paper, we propose basic properties of KO and MSK methods and algorithm that can reduce coefficient-multiplications. The proposed algorithm is more reducible than the original KO and MSK methods. This characteristic makes the employment of this multiplier particularly suitable for applications characterized by specific space constrains, such as those based on smart cards, token hardware, mobile phone or other devices.

A Parallel Multiplier By Mutidigit Numbers Over GF($P^{nm}$) (GF($P^{nm}$)상의 다항식 분할에 의한 병렬 승산기 설계)

  • 오진영;윤병희나기수김흥수
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.771-774
    • /
    • 1998
  • In this paper proposes a new bit-parallel structure for a multiplier over GF((Pn)m), with k-nm. Mastrovito Multiplier, Karatsuba-ofman algorithm are applied to the multiplication of polynomials over GF(2n). This operation has a complexity of order O(k log p3) under certain constrains regardig k. A complete set of primitive field polynomials for composite fields is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(Pk) with low gate counts and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF