Journal of the Institute of Electronics Engineers of Korea SD
/
v.43
no.3
s.345
/
pp.33-39
/
2006
In this paper we propose the Modified Karatsuba-Ofman algorithm for polynomial multiplication to polynomials of arbitrary degree. Leone proposed optimal stop condition for iteration of Karatsuba-Ofman algorithm(KO). In this paper, we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA) with removing redundancy operations, and design a parallel hardware architecture based on the proposed algorithm. Comparing with existing related Karatsuba architectures with the same time complexity, the proposed architecture reduces the area complexity. Furthermore, the space complexity of the proposed multiplier is reduced by 43% in the best case.
Chang Nam-Su;Han Dong-Guk;Jung Seok-Won;Kim Chang Han
Journal of the Institute of Electronics Engineers of Korea SC
/
v.41
no.1
/
pp.33-40
/
2004
The divide-and-conquer method is efficiently used in parallel multiplier over finite field $GF(2^n)$. Leone Proposed optimal stop condition for iteration of Karatsuba-Ofman algerian(KOA). Ernst et al. suggested Multi-Segment Karatsuba(MSK) method. In this paper, we analyze the complexity of a parallel MSK multiplier based on the method. We propose a new parallel MSK multiplier whose space complexity is same to each other. Additionally, we propose optimal stop condition for iteration of the new MSK method. In some finite fields, our proposed multiplier is more efficient than the KOA.
Elliptic Curve Cryptography (ECC) coprocessors support massive scalar multiplications of a point. We research the design for multi-segment multipliers in fixed-size ECC coprocessors using the multi-segment Karatsuba algorithm on GF($2^m$). ECC coprocessors of the proposed multiplier is verified on the SoC-design verification kit which embeds ALTERA EXCALIBUR FPGAs. As a result of our experiment, the multi-segment Karatsuba multiplier, which has more efficient performance about twice times than the traditional multi-segment multiplier, can be implemented as adding few H/W resources. Therefore the multi-segment Karatsuba multiplier which satisfies performance for the cryptographic algorithm, is adequate for a low cost embedded system, and is implemented in the minimum area.
Ji, Sung-Yeon;Chang, Nam-Su;Kim, Chang-Han;Lim, Jong-In
Journal of the Institute of Electronics Engineers of Korea SD
/
v.44
no.9
/
pp.1-9
/
2007
For an efficient implementation of cryptosystems based on arithmetic in a finite field $GF(2^n)$, their hardware implementation is an important research topic. To construct a multiplier with low area complexity, the divide-and-conquer technique such as the original Karatsuba-Ofman method and multi-segment Karatsuba methods is a useful method. Leone proposed an efficient parallel multiplier with low area complexity, and Ernst at al. proposed a multiplier of a multi-segment Karatsuba method. In [1], the authors proposed new $MSK_5$ and $MSK_7$ methods with low area complexity to improve Ernst's method. In [3], the authors proposed a method which combines $MSK_2$ and $MSK_3$. In this paper we propose an efficient multiplication method by combining $MSK_2,\;MSK_3\;and\;MSK_5$ together. The proposed method reduces $116{\cdot}3^l$ gates and $2T_X$ time delay compared with Gather's method at the degree $25{\cdot}2^l-2^l with l>0.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.2
/
pp.121-126
/
2014
The problem of finding the fastest algorithm for multiplication of two large n-digit decimal numbers remains unsolved in the field of mathematics and computer science. To this problem so far two algorithms - Karatsuba and Toom-kook - have been proposed to shorten the number of multiplication. In the complete opposite of shorten the number of multiplication method, this paper therefore proposes an efficient multiplication algorithm using additions completely. The proposed algorithm totally applies shift-and-add algorithm of binary system to large digits of decimal number multiplication for example of RSA-100 this problem can't perform using computer. This algorithm performs multiplication purely with additions of complexity of $O(n^2)$.
Elliptic curve cryptography is a relatively lightweight public-key cryptography method for key generation and digital signature verification. Some lightweight curves (eg, Curve25519 and Curve Ed448) have been adopted by upcoming Transport Layer Security 1.3 (TLS 1.3) to replace the standardized NIST curves. However, the efficient implementation of Curve Ed448 on Internet of Things (IoT) devices remains underexplored. This study is focused on the optimization of the Curve Ed448 implementation on low-end IoT processors (ie, 8-bit AVR and 16-bit MSP processors). In particular, the three-level and two-level subtractive Karatsuba algorithms are adopted for multi-precision multiplication on AVR and MSP processors, respectively, and two-level Karatsuba routines are employed for multi-precision squaring. For modular reduction and finite field inversion, fast reduction and Fermat-based inversion operations are used to mitigate side-channel vulnerabilities. The scalar multiplication operation using the Montgomery ladder algorithm requires only 103 and 73 M clock cycles on AVR and MSP processors.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.419-426
/
2021
A high-performance elliptic curve cryptography processor (HP-ECCP) was designed to support five field sizes of 192, 224, 256, 384 and 521 bits over GF(p) defined in NIST FIPS 186-2, and it provides eight modes of arithmetic operations including ECPSM, ECPA, ECPD, MA, MS, MM, MI and MD. In order to make the HP-ECCP resistant to side-channel attacks, a modified left-to-right binary algorithm was used, in which point addition and point doubling operations are uniformly performed regardless of the Hamming weight of private key used for ECPSM. In addition, Karatsuba-Ofman multiplication algorithm (KOMA), Lazy reduction and Nikhilam division algorithms were adopted for designing high-performance modular multiplier that is the core arithmetic block for elliptic curve point operations. The HP-ECCP synthesized using a 180-nm CMOS cell library occupied 620,846 gate equivalents with a clock frequency of 67 MHz, and it was evaluated that an ECPSM with a field size of 256 bits can be computed 2,200 times per second.
Vijayakumar, P.;Bose, S.;Kannan, A.;Jegatha Deborah, L.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.4
/
pp.878-894
/
2013
Secure multimedia multicast applications involve group communications where group membership requires secured dynamic key generation and updating operations. Such operations usually consume high computation time and therefore designing a key distribution protocol with reduced computation time is necessary for multicast applications. In this paper, we propose a new key distribution protocol that focuses on two aspects. The first one aims at the reduction of computation complexity by performing lesser numbers of multiplication operations using a ternary-tree approach during key updating. Moreover, it aims to optimize the number of multiplication operations by using the existing Karatsuba divide and conquer approach for fast multiplication. The second aspect aims at reducing the amount of information communicated to the group members during the update operations in the key content. The proposed algorithm has been evaluated based on computation and communication complexity and a comparative performance analysis of various key distribution protocols is provided. Moreover, it has been observed that the proposed algorithm reduces the computation and communication time significantly.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.3
/
pp.515-518
/
2019
The performance of Elliptic Curves Cryptosystem(ECC) is dominated by the modular multiplication since the elliptic curve scalar multiplication consists of the modular multiplication in projective coordinates. In this paper, we propose a new method that combines the Karatsuba-Ofman multiplication method and a new modular reduction algorithm in order to improve the performance of the modular multiplication for NIST p224 in the FIPS 186-4 standard. The proposed method leads to a running time improvement for computing the modular multiplication about 25% faster than the previous methods. The results also show that the method can reduce the arithmetic complexity by half when compared with traditional implementations on the standpoint of the modular reduction.
Jihoon Jang;Myeonghoon Lee;Suhri Kim;Seogchung Seo;Seokhie Hong
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.5
/
pp.841-853
/
2024
This paper proposes an optimization method for the GF(2)[x] multiplication operation in HQC on AVX2. HQC is a candidate in NIST PQC standardization round 4 and is a binary code-based key exchange algorithm. The multiplication operation is one of the most time-complex operations in HQC, accounting for about 30% of the total clock cycles in the AVX2 environment. For the optimization, we used Karatsuba and Toom-Cook algorithms. Both algorithms are based on divide-and-conquer methods, which require multiplications of smaller order within them. We propose a method to optimize polynomial multiplication in HQC by finding the most efficient combination of Karatsuba and Toom-Cook algorithms, and compare the performance of the proposed method based on the implementation submitted to the PQC standardization. The results of the comparison demonstrate a performance improvement of 4.5%, 2.5%, and 30.3% over the GF(2)[x] multiplications of original hqc-128, -192, and -256. When applied to key generation, encapsulation, and decapsulation, the performance improvement over the original HQC is 2.2%, 2.4%, and 2.3% for hqc-128, 1.6%, 4.2%, and 2.6% for hqc-192, and 13.3%, 14.7%, and 13.3% for hqc-256, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.