• Title/Summary/Keyword: Kalman FIlter Estimation

Search Result 822, Processing Time 0.024 seconds

Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm (칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

A Study on Dynamics Analysis and Real Time Optimal Tracking Control& Rhino Robotic Manipulator (라이노 로보트 매니퓰레이터의 동특성 미 실시간 최적추적제어에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.52-74
    • /
    • 1989
  • In general, the state of system can be effected by external noise and observed only through a noisy channel. Therefore we use the estimation technigue for the information of state of the system effected by noise. There are many filters such as kalman-Buchy filter, kalman filter, Extended Kalman filter algorithm, cononlinear, extended Kalman filter algorithm to the estimation of parameters is very useful and has a long history. Also a considerable number of applications of this method has been reported. In this paper, the robot control system is treated in stochastic optimal control because of the robots doing a complicated and accurate task in inapproate environment. We have conclusion that error covariance is converged and the stability of filtering is obtained.

  • PDF

Design of Suboptimal Robust Kalman Filter via Linear Matrix Inequality (선형 행렬 부등식을 이용한 준최적 강인 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.560-570
    • /
    • 1999
  • This paper formulates the suboptimal robust Kalman filtering problem into two coupled Linear Matrix Inequality (LMI) problems by applying Lyapunov theory to the augmented system which is composed of the state equation in the uncertain linear system and the estimation error dynamics. This formulations not only provide the sufficient conditions for the existence of the desired filter, but also construct the suboptimal robust Kalman filter. The proposed filter can guarantee the optimized upper bound of the estimation error variance for uncertain systems with parametric uncertainties in both the state and measurement matrices. In addition, this paper shows how the problem of finding the minimizing solution subject to Quadratic Matrix Inequality (QMI), which cannot be easily transformed into LMI using the usual Schur complement formula, can be successfully modified into a generic LMI problem.

  • PDF

State observer design for noise reduction and state estimation in the photovoltaic power generation system (태양광 발전 시스템의 노이즈 감소와 상태추정을 위한 상태관측기 설계)

  • Kim, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.369-371
    • /
    • 2007
  • Due to the measurement noise or system noise, the performance of photovoltaic power generation system can be degraded. If this noise is contained in the solar array voltage measurement signal, the correct operation of the maximum power point tracker can not be guaranteed. The application of the extended Kalman filter to the photovoltaic system can obtain enhanced states estimation result. The Kalman filter provides a recursive solution to optimally estimate from random noise signals. Additionally, as a consequence of Kalman filter, the unmeasurable state such as inductor current can be estimated without current sensor. The methods for system modeling and extended Kalman filter design are presented and the experimental results verify the validity of the proposed system.

  • PDF

Target Tracking Filter Design For the Image Navigation System (영상 항법 시스템을 위한 표적 추적 필터의 구성)

  • Park, Young-Chul;Hong, Ki-Jeong;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.445-448
    • /
    • 1992
  • In this paper, we contructed extended Kalman filter for the image navigation systems. The conventional extended Kalman filter methode are simulated for nonlinear measurement systems. In addition, we designed a maneuvering target tracking filter using Singer's model technique and input estimation technique by Chan. Simulation results show that Chan's input estimation technique has performed better than Singer's technique.

  • PDF

Rotor Position and Speed Estimation of Interior Permanent Magnet Synchronous Motor using Unscented Kalman Filter

  • An, Lu;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.458-464
    • /
    • 2014
  • This paper proposes the rotor position and rotor speed estimation for an interior permanent magnet synchronous machines (IPMSM) using Unscented Kalman Filter (UKF) in alpha-beta coordinate system. Conventional algorithms using UKF are based on the simple observer model of IPMSM in d-q coordinate system. Rotor acceleration is neglected within the sampling step. An expansion of the observer model in an alpha-beta coordinate system with the consideration of the rotor speed variation provides the improved rotor position and speed estimation. The results show good stability concerning the expansion of observer model for the IPMSM.

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

Fuzzy Kalman filtering for a nonlinear system (비선형 시스템을 위한 퍼지 칼만 필터 기법)

  • No, Seon-Yeong;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.461-464
    • /
    • 2007
  • In this paper, we propose a fuzzy Kalman filtering to deal with a estimation error covariance. The T-S fuzzy model structure is further rearranged to give a set of linear model using standard Kalman filter theory. And then, to minimize the estimation error covariance, which is inferred using the fuzzy system. It can be used to find the exact Kalman gain. We utilize the genetic algorithm for optimizing fuzzy system. The proposed state estimator is demonstrated on a truck-trailer.

  • PDF

Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator

  • Kim, Kiyoung;Choi, Jaemook;Koo, Gunhee;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.647-667
    • /
    • 2016
  • In this paper, dynamic displacement is estimated with high accuracy by blending high-sampling rate acceleration data with low-sampling rate displacement measurement using a two-stage Kalman estimator. In Stage 1, the two-stage Kalman estimator first approximates dynamic displacement. Then, the estimator in Stage 2 estimates a bias with high accuracy and refines the displacement estimate from Stage 1. In the previous Kalman filter based displacement techniques, the estimation accuracy can deteriorate due to (1) the discontinuities produced when the estimate is adjusted by displacement measurement and (2) slow convergence at the beginning of estimation. To resolve these drawbacks, the previous techniques adopt smoothing techniques, which involve additional future measurements in the estimation. However, the smoothing techniques require more computational time and resources and hamper real-time estimation. The proposed technique addresses the drawbacks of the previous techniques without smoothing. The performance of the proposed technique is verified under various dynamic loading, sampling rate and noise level conditions via a series of numerical simulations and experiments. Its performance is also compared with those of the existing Kalman filter based techniques.