• Title/Summary/Keyword: Kalanchoe blossfeldiana

Search Result 15, Processing Time 0.028 seconds

Bacterial Soft rot of Kalanchoe blossfeldiana by Erwinia herbicola in Korea (Erwinia herbicola 의한 Kalanchoe blossfeldiana세균성무름병)

  • 최재을;이은정
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.15-18
    • /
    • 2000
  • A new bacterial disease was found on leaves of Kalanchoe blossfeldiana plant grown under vinyl-house condition in winter of 1998 in Taejeon. the first symptoms of the disease are the appearance of the water-soaked and light brown spots. Later they become soft rot with brown color. Causal bacteria were isolated from diseased tissues and the same symptoms as the natural infection were developed on Kalanchoe blossfeldiana leaves by needle-prick inoculation. The causal bacterium was identified Erwinia hervicola by its bacteriological characteristics. This is the first reported of this bacterium to occur on kalanchoe blossfeldiana plant in Korea. Therefore, we proposed to name the diseases as \"bacterial soft rot of Kalanchoe blossfeldiana\" by E. herbiocla.

  • PDF

Gray Mold of Kalanchoe (Kalanchoe blossfeldiana) Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 칼란코에 잿빛곰팡이병)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.145-148
    • /
    • 2003
  • In April of 2002, the gray mold disease occurred severely on kalanchoe (Kalanch oe blossfeldiana) grown in a nursery in Daesan-myon, Changwon City, Korea. The lesions were started with water-soaked spot and the leaves discolored from the tip and became gray or dark and gradully expanded to whole leaf. The conidia and mycelia of pathogen appearedd on flower, flower stalk and stem. Conidia were gray, 1-celled, mostly ellipsoid or ovoid in shape and were 8~17 ${\times}$5~12${\mu}m$ in size. Conidiophores were 13~34${\mu}m$ in size. The sclerotia were formed abundantly on potato-dextrose agar. The optimum temperature for sclerotial formation was $20^{\circ}C$. Pathogenicity of the causal organism was proved on Kalanchoe blossfeldiana according to Koch,s postulate. The causal organism was identified as Botrytis cinerea based on mycological characteristics. This is the first report on gray mold of Kalanchoe(Kalanchoe blossfeldiana) caused by Botrytis cinerea in Korea.

Effects of STS and 1-MCP on Flower Opening and Lifespan of Potted Kalanchoe blossfeldiana Exported to Japan

  • Park, Sin-Ae;Kwon, Youn-Jung;Oh, Myung-Min;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.43-47
    • /
    • 2011
  • This study was conducted to determine the effects of silver thiosulfate (STS) and 1-methylcyclopropene (1-MCP) on flower opening and lifespan of potted Kalanchoe blossfeldiana 'Oriba' for exportation. Ethylene inhibitors, STS and 1-MCP were applied to the kalanchoe plants prior to their export to Japan. STS 0.5 mM with 1% Tween 20 surfactant was directly sprayed (20 mL per plant) to leaves, buds, and flowers and 1-MCP 100 $nL{\cdot}L^{-1}$ was injected into sealed glass chambers containing kalanchoe plants, which were placed on the chambers for 6 hours. After transport to Japan, the plants were immediately transferred to a simulated retail condition room (80 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 hours of photoperiod at $22^{\circ}C$ and 64% RH) at Toyko University. The numbers of buds, open florets, and wilted florets in the middle inflorescence for each plant were counted right after export, 1 week after export, and 6 weeks after export. The percentages of open florets and wilted florets were calculated from the numbers. STS treatment resulted in 35% more open florets than the control and only 11% of wilted florets at 6 weeks after export to Japan which indicate the extension of lifespan of potted kalanchoe plants. Meanwhile, the plants exposed to 1-MCP before export did not show any significant differences in the numbers of buds and open florets and the percentages of open and wilted florets compared to control plants. In conclusion, STS 0.5 mM treatment strikingly induced better opening florets and lifespan of kalanchoe plants from 1 week to 6 weeks after export than control.

Leaf Spot of Kalanchoe (Kalanchoe blossfeldiana) Caused by Stemphylium lycopersici (Stemphylium lycopersici에 의한 칼란코에 점무늬병)

  • Kwon, Jin-Hyeuk;Jeong, Byoung-Ryong;Yun, Jae-Gill;Lee, Sang-Woo
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.122-125
    • /
    • 2007
  • Leaf spot disease of Kalanchoe (Kalanchoe blossfeldiana) occurred at the farmer's vinly house in Gangseo-gu, Busan Metropolitan City, Korea, 2006. The diseased plants with typical symptom were collected and the casual agent were isolated. Its mycological characteristics and pathogenicity were examined. The results were as follows. The typical symptoms of the disease appeared as small brownish or dark brown spot on both sides of the leaves. The spots tended to develop from lower leaves. The spots gradually enlarged into conspicuous necrotic lesions 1-5 mm in diameter. Colonies of the causal fungus formed on potato dextrose agar were velvety, gray or grayish brown in color, Conidia were cylindrical or obclavate to oblong in shape, brown in color, $24{\sim}65\;{\times}\;12{\sim}23\;{\mu}m$ in size and had 1-4 transverse septa, The optimum temperature for growth of the fungus was about $25-30^{\circ}C$. Conidiophores were brown in color, $32{\sim}135\;{\times}\;4{\sim}8\;{\mu}m$ in size and had 1-7 transverse septa. The fungus was identified as Stemphylium lycopersici (Enjoji) Yamamoto based on its symptom and mycological characteristics. This is the first report of leaf spot of Kalanchoe caused by S. lycopersici in Korea.

Rooting and Growth of Kalanchoe 'Gold Strike' Cuttings in Various Mixtures of CGF (재활용 CGE의 다양한 혼합비율에 따른 분화 칼란코에 ‘Gold Strike’ 삽수의 발근과 생육)

  • 이미영;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.108-114
    • /
    • 2002
  • Cellular glass foam (CGE), the reprocessed glass, has a possibility as a component of vegetative propagation media of floricultural crops due to the its excellent air and water permeability, similar to that of perlite. An experiment was conducted to evaluate the rooting and growth thereafter of Kalanchoe blossfeldiana ‘Gold Strike’in media containing various volume ratios of granular rockwool, peat-moss, CGF and perlite. The particle size of CGF and perlite was 2.0~4.0mm and 1.2~4.0mm, respectively. Cuttings were rooted in a fog tunnel with a mean temperature of 18.2$^{\circ}C$ and RH of 66.7% under a long day regime (14 h per day light period). Height, length of the longest root, stem diameter, no. of leaves, leaf area, percentage of rooted cuttings, shoot and root fresh weights, shoot and root dry weights, total chlorophyll concentration and physicochemical properties were measured. Cuttings rooted 100% in all treatments. Physicochemical properties in CGF and perlite-containing media showed little differences. The growth of rooted plants in the CGF-containing media was similar or rather superior to that in perlite-containing media. Consequently, CGF has a possibility as a vegetative propagation medium of Kalanchoe. To make wider commercial use of CGF, more demonstrative experiments and analyses are necessary.

Epidermal Structure and Stomatal Types in Various Parts of Each Organ of Kalanchoe (Kalanchoe속의 기관 부위별 표피구조와 기공유형)

  • 정우규
    • Journal of Plant Biology
    • /
    • v.30 no.2
    • /
    • pp.79-94
    • /
    • 1987
  • This study was carried out to investigate the epidermal structure, the stomatal types, the ontogeny of stomara in various parts of each organ of K. blossfeldiana, K. kewensis, and K. tometosa belonging to Kalanchoe. The epidermal cells were polygonal or isodiametric ones in the leaves, and mostly rectangular, tetragonal, and elongated ones in the leaves, and mostly rectangular, tetragonal, and elongated ones in the other organs. The candelabrum-like, triradiate stellete trichomes in the aerial parts of all organs of K. tomentosa were found. The cuticular striations and square crystals of calcium oxalate in the epidermal cells of petals of K. blossfeldiana were observed. The great majority of the mature stomata in various parts of all the organs were commonly helicocytic types. This type was subdivided into three subtypes such as parahelicocytic, anomohelicocytic, and dianisocytic stomata on the basis of the division angle of the guard mother cells. Somethies, the anisocytic type was found in most organs. This type was subdivided into three subtyes such as paranisocytic, nomoanisocytic, and dianisocytic stomata in the same way as the helicocytic type. A new stomataltype with anisocytic stoma within a girdle of four subsidiary cells of tetracytic type in the leaf of K. kewensis was firstly observed in the vascular plants. This type was termed the coaniso-tetracytic type. The anomomeristic pattern in the mesogenous category of stomatal types was found in various organs of all the material plants. Developmental mode of stomata was constant in all the parts of each organ within the same plant. The stomata was observed to be a few similar stomatal types in various parts of each organ within the same plant. The ontogeny of all the types is eumesogenous or mesogenous type. The ontogenetic type of stomata was mostly helico-eumesogenous type in all the organs of all the material plants. The mature stoma varied from organ to in regard of the number and arrangement of subsidiary cells.

  • PDF

Plant Growth and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'New Alter') and Nutrient Accumulation of Growing Media with Growth Stage at Different Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and flow 저면관수 시스템에서 칼랑코에(Kalanchoe blossfeldiana 'New Alter') 생육단계별 배양액 농도에 따른 생육, 양분흡수 및 배지 양분 집적)

  • Noh, Eun-Hee;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.973-979
    • /
    • 2010
  • The objective of this study was to determine the effect of electrical conductivity (EC) of nutrient solution on the growth, nutrient uptake of potted kalanchoe plants ($Kalanchoe$ $blossfeldiana$ 'New Alter') and the nutrient accumulation at the growing media with growth stage in ebb and flow subirrigation systems. Significant differences in leaf area, plant height, and dry weight of the plants were found among the different ECs of nutrient solution of 0.8, 1.6, 2.4, and $3.2dS{\cdot}m^{-1}$. Particularly the difference in plant growth became significantly greater from 5 weeks after treatment. The overall growth was the highest at EC $1.6dS{\cdot}m^{-1}$. Leaf area, plant height, and dry weight were maintained higher when EC increased to $2.4dS{\cdot}m^{-1}$, but rapidly decreased after EC $3.2dS{\cdot}m^{-1}$. The uptake of NO3-N was the greatest while that of $Mg^{2+}$ was the lowest at EC $1.6dS{\cdot}m^{-1}$, even though small differences were found among macro elements. The EC at the top layer of the growing media was 1 to 3 times higher than that at the bottom layer. Nutrient accumulation was accelerated in both the top and bottom layers with growth stage. At EC $3.2dS{\cdot}m^{-1}$, the growth of the plants was suppressed due to higher nutrient accumulation at the growing media. From the results, the strength and composition of nutrient solution should be determined by considering nutrient accumulation at the growing media in addition to EC of nutrient solution in ebb and flow subirrigation systems.

Growth Characteristics and Nutrient Uptake of Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Different Light Intensities and Nutrient Strengths in Ebb and Flow Subirrigation Systems (Ebb and Flow 저면관수 시스템에서 광강도와 양액농도에 따른 칼랑코에(Kalanchoe blossfeldiana 'Marlene') 생육 및 양분흡수 특성)

  • Noh, Eun-Hee;Jun, Ha-Joon;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.187-194
    • /
    • 2011
  • The objective of this study was to determine the effects of light intensity and electrical conductivity (EC) of nutrient solution on the growth and nutrient uptake of potted kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') with growth stage in ebb and flow subirrigation systems. The plants were grown at four ECs of 0.5, 1.0, 1.5, and 2.0 $dS{\cdot}m^{-1}$ for seedling stage and four ECs of 1.0, 1.5, 2.0, and 3.0 $dS{\cdot}m^{-1}$ for short day stage under three daily photosynthetic photon flux (PPF) of 6.5, 10.3, 18.2 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. At seedling stage, plant height was the longest under the lowest light intensity, and particularly dry weights and leaf areas were the highest at PPF 10.3 $mol{\cdot}m^{-2}{\cdot}d^{-1}$. Dry weights and leaf areas were the highest at EC 1.5 $dS{\cdot}m^{-1}$ regardless of light intensity. At short day exposure, plant height was the longest under the lowest light intensity. Dry weights, leaf areas, and number of pedicels of the plants significantly increased as light intensity increased. Under all light intensity conditions, dry weights, leaf areas, and number of pedicles increased until EC becomes to 1.0 - 2.0 $dS{\cdot}m^{-1}$. And after reached the highest at EC 2.0 $dS{\cdot}m^{-1}$, they decreased at EC 3.0 $dS{\cdot}m^{-1}$. By comparing the ion uptakes at EC 1.5 $dS{\cdot}m^{-1}$ of seedling stage and EC 2.0 $dS{\cdot}m^{-1}$ of short day stage in which the plants grew better, we confirmed that ion balance of nutrient solution among $NO_3{^-}$-N, $H_2PO_4{^-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were significantly changed at short day stage compared to seedling stage. For better growth of the plants, both ion balance and EC of nutrient solution should be considered under different light intensities at short day stage while control of EC is enough at seedling stage.

Effect of a Silicate Fertilizer Supplemented to a Medium on the Growth and Development of Potted Plants (배지에 첨가한 규산질 비료가 분식물의 발근과 생육에 미치는 영향)

  • Bae, Min Ji;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This experiment was carried out to examine the effect of a silicate fertilizer on the growth and development of potted plants. Cutting of Kalanchoe blossfeldiana 'Kaluna' and 'Taos', and Dianthus caryophyllus L. 'Kazan' and 'Tula' were grown in 50 and 128-cell plug trays, respectively. Rooted cuttings transplanted to the mixture of a commercial medium and perlite (5:1, v/v) supplemented with a silicate fertilizer at 0, 40, 80, 120 or $160g{\cdot}L^{-1}$ medium was evaluated. A silicate fertilizer supplementation at $40g{\cdot}L^{-1}$ medium resulted in the greatest plant height, leaf thickness, and root fresh and dry weights in both kalanchoe and carnation. However, plant height was suppressed in the treatment of a silicate fertilizer supplementation at higher concentrations in both kalanchoe and carnation. According to the scanning electron microscope images of transversal sections of tissues of roots and leaves in kalanchoe and carnation, the treatment of a silicate fertilizer supplementation at $40g{\cdot}L^{-1}$ medium resulted in plants with more compact tissue than the control.