• Title/Summary/Keyword: Kaempferol-3-O-glucoside

Search Result 61, Processing Time 0.02 seconds

Flavonoids from the Flower of Clerodendrum trichotomum (누리장나무 꽃의 Flavonoid 성분)

  • Lee, Jong-Wook;Kang, Se Chan;Bae, Jong Jin;Lee, Kyung Bok;Kwak, Jong Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • Seven flavonoids were isolated from the flower of Clerodendrum trichotomum. Their structures were identified as apigenin (1), genistein (2), chrysoeriol (3), genistein 7-O-glucoside (4), kaempferol 3-O-glucoside (5), isorhamnetin 3-O-glucoside (6) and apigenin 7-O-glucoside (7) on the basis of spectral data. These compounds were isolated from C. trichotomum for the first time. The antioxidant activity of compounds 1-7 were evaluated by the ORAC (oxygen radical absorbance capacity) assay, and the ORAC values were expressed as relative trolox equivalent. All isolated compounds exhibited antioxidant activity.

Compounds of the Stem of Clematis trichotoma (할미질빵 줄기의 성분)

  • Ham, Seock-Bin;Kim, Yang-Il;Kwon, Yong-Soo;Kim, Chang-Min
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.301-305
    • /
    • 1999
  • Eight compounds were isolated from the BuOH extract of the stem of Clematis trichotoma (Ranunculaceae). On the basis of spectroscopic evidences, the structures of these compounds were established as rutin, kaempferol 3-O-neohesperidoside, adenosine, adenin, hirustrin, caffeic acid $4-{\beta}-glucoside$, 3-methoxyarbutin and uridine.

  • PDF

Chemical Constituents of the Leaves of Weigela subsesillis (병꽃나무 잎의 성분)

  • Won, Hee-Mok;Kwon, Yong-Soo;Lee, Jin-Hoon;Kim, Chang-Min
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.1 s.136
    • /
    • pp.1-5
    • /
    • 2004
  • Eight compounds were isolated from the n-BuOH soluble fraction of the leaves of Weigela subsesillis. On the basis of spectral data, they wεre identified as $kaempferol-O-3-{\alpha}-L-(3-O-acetyl)\;rhamnopyranosyl-7-O-{\alpha}-L-rhamnopyranoside$ (1), sutchuenoside A (2), kaempferitrin (3), astragalin (4), kaempferol 7-O-rhamnoside (5), scopolin (6), farxin (7), kaempferol 3-O-{\alpha}-L-rhamnosyl-7-O-{\beta}-D-glucoside (8), respectively.

Heptatriacontanol and Phenolic Compounds from Halochris hispida

  • Gohar, Ahmed A.
    • Natural Product Sciences
    • /
    • v.7 no.3
    • /
    • pp.68-71
    • /
    • 2001
  • The phytochemical investigation of Halocharis hispida revealed the presence of 1-heptatriacontanol, ${\beta}-sitosterol$, ${\beta}-sitosterol-3-O-glucoside$, kaempferol, vitexin and isorhamnetin-3-O-galactoside in addition to vanillic, ferulic, isoferulic, syringic and caffeic acids. The different isolated compounds were identified by different physical, chemical, chromatographic and/or spectral methods.

  • PDF

Inhibition of Matrix Metalloproteinase-2 Activity of Flavonol Glycosides from Cedreia sinensis (참죽나무에서 분리한 flavonol glycoside의 금속단백분해효소-2 억제 활성)

  • Hwang Seon-Woo;Ha Tae-Joung;Kho Yung-Hee;Chun Hyo-Kon;Lee Jun;Kwon Hyun-Sook;Park Ki-Hun;Yang Min-Suk
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.442-446
    • /
    • 2006
  • Cedrela sinensis is a broadleaf tree that is widely cultivated in Korea and China. It was used for treating enteritis, dysentery, and skin itch in oriental medicine. In this study, three major flavonoids, kaempferol-3-O-rhamnoside (1), quercetin-3-O-rhamnoside (2), and quercetin-3-O-glucoside (3), were isolated from the leaf of Cedrela sinensis. The biological activities of these compounds were tested by inhibitory activity of matrix metalloproteinases-2 (Type IV collagenase) method together with a cytotoxicity and a apoptosis test against human cancer cell lines.

Component Analysis of Suaeda asparagoides Extracts (나문재 추출물의 성분 분석)

  • Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • In the previous study, the anti-oxidant activity of oxtract/fraction of Sueada aspparagoides(SA) and the stability test for the cream containing SA extract were investigated respectively[1,2]. In this study, the components of SA extract were analyzed by TLC, HPLC, and LC/ESI-MS/MS, $^1H$-NMR. TLC chromatogram of ethyl acetate fraction of SA extract revealed 5 bands $(SA1{\sim}SA5)$. HPLC chromatogram of aglycone fractions obtained from deglycoylation reaction of ethyl acetate fraction showed 2 bands (SAA 2 and SAA 1), which were identified as quercetin (composition ratio, 16.88%) and kaempferol (83.12%) in the order of elution time. Among 5 bands of TLC chromatogram, 4 bands $(SA2{\sim}SA5)$ also were Identified as kaempferol-3-O-glucoside (SA 2), quercetin-3-O-glucoside (SA3), kaempferol-3-O-rutinoside (SA 4), quercetin-3-O-rutinoside (SA 5) by LC/ESI-MS/MSMS/MS. respectively. The spectrum generated for SAA 1 by LC/ESI-MS/MS in the negative ion mode also gave the ion corresponding to the deprotonated aglycone $[M-H]^-$ (285m/z), the $^1H$-NMR spectrum contained signals [${\delta}$ 6.19 (1H, d, J=1.8Hz, H-6), ${\delta}$ 6.44 (1H, d, J=1.8Hz, H-8), ${\delta}$ 6.92 (2H, d, J=9.0Hz, H-3', 5'), ${\delta}$ 8.04 (2H, d, J=9.0Hz, H-2', 6', thus SAA 1 was identified as kaempferol. SAA 2 yielded the deprotonated agycone ion $[M-H]^-$ (301m/z), $^1H$-NMR spectrum showed signals [${\delta}$ 6.20 (1H, d, J=2.0Hz, H-6), ${\delta}$ 6.42 (1H, d, J=2.0Hz, H-8), ${\delta}$ 6.90 (1H, d, J=8.6Hz, H-5'), ${\delta}$ 7.55 (1H, dd, J=8.6, 2.2Hz, H-6'), ${\delta}$ 7.69 (1H, d, J=2.2Hz, H-2', thus SAA 2 was Identified as quercetin. In conclusion, with the anti-oxidant activity and the stability test reported previously, component analysis of SA extracts could be applicable to new cosmeceuticals.

High-Performance Liquid Chromatographic Quantification of Flavonol Glycosides in Orostachys Species

  • Nugroho, Agung;Kim, Myung-Hoe;Han, Yu-Ran;Choi, Jae-Sue;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • The herbs of Orostachys japonicus (Crassulaceae) have been used to treat gastric cancer, gastric ulcer or hemorrhage. Flavonoid glycosides, mainly kaempferol (Kp)- and quercetin (Qc) glycosides, have been isolated from O. japonicus; however, no quantitative information on those flavonol glycosides and no peroxynitritescavenging activity of the Orostachys extracts have been reported. In this study, Kp- and Qc glycosides were qualitatively and quantitatively analyzed by high-performance liquid chromatography (HPLC) in eight Orostachys and a Meterostachys species including O. japonicas, O. margaritifolius, O. chongsunensis, O. minuta, O. ramosus, O. malacophylla, O. latiellipticus, O. iwarenge, O. iwarenge for. magnus, and Meterostachys sikokiana distributed or cultivated in Korea. Distinctively, O. margaritifolius contained two flavonol 3,7-di-O-glycosides of Kp 3,7-di-O-glucoside and Kp 3-rhamnosyl-7-glucoside, but O. japonicus had two flavonol 3-O-rutinosides, Kp 3-rutinoside and Qc 3-rutinoside. The three species of O. margaritifolius (24.36 mg/g MeOH extract), O. japonicus (21.28 mg/g), and O. minuta (19.50 mg/g) showed relatively higher flavonoid contents. The flavonol glycosides were analyzed using eight standard compounds (Kp, Qc, Qc 3-O-rhamnoside, Qc 3-O-glucoside, Kp 3- O-rutinoside, Qc 3-O-rutinoside, Kp 3-O-rhamnosyl-7-O-glucoside, Kp 3,7-di-O-glucoside). The present HPLC method was validated to verify the linearity, precision, and accuracy. In addition, the peroxynitrite-scavenging activity was also discussed.

Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress

  • Jeong, Da-Wool;Cho, Chi Heung;Lee, Jong Suk;Lee, Seung Hwan;Kim, Taewan;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1094-1104
    • /
    • 2018
  • The peel of astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product of dried persimmon (gotgam). We investigated if deastringent peel extracts of persimmon cv. Cheongdo-Bansi had antioxidative and neuroprotective properties. Two different extracts were prepared: thermally and nonthermally treated persimmon peel extracts (TPE and NTPE, respectively). Both TPE and NTPE were fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The TPE and NTPE ethyl acetate fractions had the highest total phenolic and flavonoid contents as well as antioxidant capacities among all the fractions. Pretreatment of neuronal PC-12 and SH-SY5Y cells with the TPE and NTPE ethyl acetate fractions increased cell viability after exposure to oxidative stress. The ethyl acetate fraction of TPE attenuated oxidative stress inside both PC-12 and SH-SY5Y cells more effectively than that of NTPE. Furthermore, the TPE and NTPE ethyl acetate fractions inhibited acetylcholinesterase and butyrylcholinesterase. Analysis of ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry results revealed gallic acid, kaempferol, kaempferol-3-O-galactoside, kaempferol-3-O-glucoside, quercetin, quercetin3-O-galactoside, quercetin-3-O-galactoside-2'-O-gallate, and quercetin-3-O-glucoside as the major phenolics of the TPE and NTPE ethyl acetate fractions. Taken together, these results suggest that the ethyl acetate fraction of deastringent persimmon peel is rich in antioxidants and has potential as a functional food to reduce oxidative stress.

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.

Antioxidative Activity and Component Analysis of Prunella vulgaris L. Extract/Fractions (하고초 추출물의 항산화 활성 및 성분 분석)

  • Suh, Ji Young;Seong, Joon Seob;Yun, Mid Eum;Lee, Ye Seul;Ha, Ji Hoon;Park, Dong Soon;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.647-657
    • /
    • 2016
  • In this study, the antioxidative effects and active component analysis of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Prunella vulgaris L. were investigated. The free radical scavenging activities ($FSC_{50}$) was investigated at 50% ethanol extract ($15.25{\mu}g/mL$), ethyl acetate fraction ($8.68{\mu}g/mL$), and aglycone fraction ($8.25{\mu}g/mL$) respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was investigated at 50% ethanol extract ($4.68{\mu}g/mL$), ethyl acetate fraction ($1.00{\mu}g/mL$), and aglycone fraction($1.02{\mu}g/mL$) respectively. In the cellular protective effect against $^1O_2$ induced cellular damage of human erythrocytes, extract/fractions of P. vulgaris L. were increased in a concentration dependent manner($1{\sim}25{\mu}g/mL$). Especially, ${\tau}_{50}$ of aglycone fraction at concentrations of $25{\mu}g/mL$ showed the most protective effects at 337.9 min. It's showed nine times higher (+)-${\alpha}$-tocopherol (${\tau}_{50}=38.7min$) as typical antioxidant in the $^1O_2$-induced photohemolysis of human erythrocytes. TLC and HPLC were used to analyse active components in the ethyl acetate fraction and aglycone fraction of P. vulgaris L. In ethyl acetate fraction, caffeic acid, rosmarinic acid, quercetin 3-${\beta}$-D-glucoside, rutin, kaempferol-3-O-rutinoside, astragalin (kaempferol-3-O-glucoside) were identified. In aglycone fraction, caffeic acid, rosmarinic acid, quercetin, kaempferol were identified. These results indicated that extract/fraction of P. vulgaris L. is may be used in cosmetics industry as natural antioxidants by quenching and/or scavenging $^1O_2$ and other ROS, and protecting cellular membranes.