• Title/Summary/Keyword: KOSPI Market

Search Result 309, Processing Time 0.025 seconds

Asymmetric Timeliness of Market Information According to Corporate Losses and Earnings (기업의 손실과 이익에 따른 시장정보의 비대칭적 적시성)

  • Jong-Gyu Kim;Myoung-Jong Kim;Seong-Jun Hwang
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.59-70
    • /
    • 2022
  • This study investigates the sensitivity reflected in the accounting earnings differs according to the difference in the characteristics of accounting information such as profit and loss for the same market information. For this, market information and accounting data were analyzed for 11,462 non-financial listed companies listed on the KOSPI and KOSDAQ markets from 2012 to 2020 by using Basu's measurement of conditional conservatism and Ball and Shivakumar's measurement of conservatism. Accounting earnings sensitivity was analyzed according to the combination of information. As a result of the study, it was confirmed that both earnings and losses corporates recognize losses with delay, while losses are recognized quickly by loss corporates and delayed recognition by earnings companies. It was confirmed that more strict conservatism was applied to the losses corporates compared to the earnings corporates by delaying the recognition of earnings while the early recognition of the losses. It provides empirical data on the causality between the asymmetric timeliness and the combined effect of market information and accounting information by verifying that the losses corporates responds sensitively to market information while the earnings corporates does not react sensitively to the market information.

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

KOSPI directivity forecasting by time series model (시계열 모형을 이용한 주가지수 방향성 예측)

  • Park, In-Chan;Kwon, O-Jin;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.

  • PDF

Estimation of VaR and Expected Shortfall for Stock Returns (주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로)

  • Kim, Ji-Hyun;Park, Hwa-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.651-668
    • /
    • 2010
  • Various estimators of two risk measures of a specific financial portfolio, Value-at-Risk and Expected Shortfall, are compared for each case of 1-day and 10-day horizons. We use the Korea Composite Stock Price Index data of 20-year period including the year 2008 of the global financial crisis. Indexes of five foreign stock markets are also used for the empirical comparison study. The estimator considering both the heavy tail of loss distribution and the conditional heteroscedasticity of time series is of main concern, while other standard and new estimators are considered too. We investigate which estimator is best for the Korean stock market and which one shows the best overall performance.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

The Performances and Character of Korean Venture Capital (한국 벤처캐피탈의 특성과 투자성과)

  • 김종권
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.285-294
    • /
    • 2002
  • The size of state in Korea is like Israel, this country's venture capital is ruled by government. This venture capital's character is below: the concentration on research of venturer affect positively at qualify of products, This paper lies with venture capital's risk character & performance. The results show that Korean venture capitals have lager unsystematic risk than systematic risk, which implies they specialize in specific business and/or regional areas instead of diversification. The Sharpe measure reveals that the performances of Korean venture capitals are very low relative to even the market portfolio(Kospi) and Kosdaq.

  • PDF

Developing Pairs Trading Rules for Arbitrage Investment Strategy based on the Price Ratios of Stock Index Futures (주가지수 선물의 가격 비율에 기반한 차익거래 투자전략을 위한 페어트레이딩 규칙 개발)

  • Kim, Young-Min;Kim, Jungsu;Lee, Suk-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.202-211
    • /
    • 2014
  • Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.

Value at Risk calculation using sparse vine copula models (성근 바인 코풀라 모형을 이용한 고차원 금융 자료의 VaR 추정)

  • An, Kwangjoon;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.875-887
    • /
    • 2021
  • Value at Risk (VaR) is the most popular measure for market risk. In this paper, we consider the VaR estimation of portfolio consisting of a variety of assets based on multivariate copula model known as vine copula. In particular, sparse vine copula which penalizes too many parameters is considered. We show in the simulation study that sparsity indeed improves out-of-sample forecasting of VaR. Empirical analysis on 60 KOSPI stocks during the last 5 years also demonstrates that sparse vine copula outperforms regular copula model.

The Effects of Blockholder Diversity on the Firm Risk: Evidence from Korea

  • KIM, Hung Sik;CHO, Kyung-Shick
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.261-269
    • /
    • 2021
  • This study examines the effect of block diversity on the risk of firms listed on the Korean Stock Exchange between 2010 and 2017. To examine the effect of block diversity on corporate risk, we measure block diversity in terms of a single component, portfolio size, by referring to prior literature. This diversity component accounts for the differences in portfolio size across corporate blocks. In line with existing research on corporate risk, we consider several variables to measure corporate risk: volatility, beta, and idiosyncratic risk. The results show a negative relationship between the size of a block shareholder's portfolio and corporate risk. We also show no difference in the effect of block diversity on the corporate risk between KOSPI and KOSDAQ. This implies that the difference in portfolio size among corporate blocks reduces corporate risk. This may be due to the effect of inter-block monitoring activities in the Korean securities market, which benefits from block diversity. This empirical result supports previous studies that predicted that block diversity would have beneficial influences on firm monitoring in general. This study is significant in that it analyzes the relationship between block diversity and firm risk and provides relevant information to business practitioners and investors.