• Title/Summary/Keyword: KOSPI Market

Search Result 309, Processing Time 0.027 seconds

The Impact of Overvaluation on Analysts' Forecasting Errors

  • CHA, Sang-Kwon;CHOI, Hyunji
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Purpose: This study investigated the effects of valuation errors on the capital market through the earnings forecasting errors of financial analysts. As a follow-up to Jensen (2005)'s study, which argued of agency cost of overvaluation, it was intended to analyze the effect of valuation errors on the earnings forecasting behavior of financial analysts. We hypothesized that if the manager tried to explain to the market that their firms are overvalued, the analysts' earnings forecasting errors would decrease. Research design, data and methodology: To this end, the analysis period was set from 2011 to 2018 of KOSPI and KOSDAQ-listed markets. For overvaluation, the study methodology of Rhodes-Kropf, Robinson, and Viswanathan (2005) was measured. The earnings forecasting errors of the financial analyst was measured by the accuracy and bias. Results: Empirical analysis shows that the accuracy and bias of analysts' forecasting errors decrease as overvaluation increase. Second, the negative relationship showed no difference, depending on the size of the auditor. Third, the results have not changed sensitively according to the listed market. Conclusions: Our results indicated that the valuation error lowered the financial analyst earnings forecasting errors. Considering that the greater overvaluation, the higher the compensation and reputation of the manager, it can be interpreted that an active explanation of the market can promote the accuracy of the financial analyst's earnings forecasts. This study has the following contributions when compared to prior research. First, the impact of valuation errors on the capital market was analyzed for the domestic capital market. Second, while there has been no research between valuation error and earnings forecasting by financial analysts, the results of the study suggested that valuation errors reduce financial analyst's earnings forecasting errors. Third, valuation error induced lower the earnings forecasting error of the financial analyst. The greater the valuation error, the greater the management's effort to explain the market more actively. Considering that the greater the error in valuation, the higher the compensation and reputation of the manager, it can be interpreted that an active explanation of the market can promote the accuracy of the financial analyst's earnings forecasts.

Stock Market Prediction Using Sentiment on YouTube Channels (유튜브 주식채널의 감성을 활용한 코스피 수익률 등락 예측)

  • Su-Ji, Cho;Cheol-Won Yang;Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.102-108
    • /
    • 2023
  • Recently in Korea, YouTube stock channels increased rapidly due to the high social interest in the stock market during the COVID-19 period. Accordingly, the role of new media channels such as YouTube is attracting attention in the process of generating and disseminating market information. Nevertheless, prior studies on the market forecasting power of YouTube stock channels remain insignificant. In this study, the market forecasting power of the information from the YouTube stock channel was examined and compared with traditional news media. To measure information from each YouTube stock channel and news media, positive and negative opinions were extracted. As a result of the analysis, opinion in channels operated by media outlets were found to be leading indicators of KOSPI market returns among YouTube stock channels. The prediction accuracy by using logistic regression model show 74%. On the other hand, Sampro TV, a popular YouTube stock channel, and the traditional news media simply reported the market situation of the day or instead showed a tendency to lag behind the market. This study is differentiated from previous studies in that it verified the market predictive power of the information provided by the YouTube stock channel, which has recently shown a growing trend in Korea. In the future, the results of advanced analysis can be confirmed by expanding the research results for individual stocks.

Further Evidence on the Existence of an Inter- and Intra-Industry Optimal Capital Structure for the KOSPI-listed Firms in the Korean Capital Market (국내 유가증권시장 상장기업들의 산업간 그리고 산업내의 최적자본구조의 존재에 대한 추가적인 실증 분석)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.110-118
    • /
    • 2017
  • This study investigated empirically one of the controversial subjects in modern finance, in that there is an optimal level of capital structure for KOSPI-listed firms in the Korean capital market. Given the major theories on the capital structure, such as Myers' pecking order, trade-off, and agency cost ones, this study applied an analysis of covariance models in parametric and non-parametric statistical methods. In particular, two covariates to control for the possible effects of trade-off and agency cost, were employed separately in each corresponding model, while the other proxy for pecking order rationale was adopted in previous research [1] to conduct inter- and intra-industry analyses. Based on the outcomes obtained from the study, it was demonstrated empirically that there are optimal capital structures for firms in the sample industries at the inter-industry level, whereas statistical differences indicating non-existence of an optimal point, were revealed within the industry. Accordingly, these findings suggest a new vision to potential investors that firms in the domestic market may have financial opportunities to increase their value by gradually adjusting the leverage ratios in terms of the intra-industry perspective.

A Case of Establishing Robo-advisor Strategy through Parameter Optimization (금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례)

  • Kang, Mincheal;Lim, Gyoo Gun
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

Barrier Option Pricing with Model Averaging Methods under Local Volatility Models

  • Kim, Nam-Hyoung;Jung, Kyu-Hwan;Lee, Jae-Wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.84-94
    • /
    • 2011
  • In this paper, we propose a method to provide the distribution of option price under local volatility model when market-provided implied volatility data are given. The local volatility model is one of the most widely used smile-consistent models. In local volatility model, the volatility is a deterministic function of the random stock price. Before estimating local volatility surface (LVS), we need to estimate implied volatility surfaces (IVS) from market data. To do this we use local polynomial smoothing method. Then we apply the Dupire formula to estimate the resulting LVS. However, the result is dependent on the bandwidth of kernel function employed in local polynomial smoothing method and to solve this problem, the proposed method in this paper makes use of model averaging approach by means of bandwidth priors, and then produces a robust local volatility surface estimation with a confidence interval. After constructing LVS, we price barrier option with the LVS estimation through Monte Carlo simulation. To show the merits of our proposed method, we have conducted experiments on simulated and market data which are relevant to KOSPI200 call equity linked warrants (ELWs.) We could show by these experiments that the results of the proposed method are quite reasonable and acceptable when compared to the previous works.

Long-run and Short-run Causality from Exchange Rates to the Korea Composite Stock Price Index

  • LEE, Jung Wan;BRAHMASRENE, Tantatape
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.257-267
    • /
    • 2019
  • The paper aims to test long-term and short-term causality from four exchange rates, the Korean won/$US, the Korean won/Euro, the Korean won/Japanese yen, and the Korean won/Chinese yuan, to the Korea Composite Stock Price Index in the presence of several macroeconomic variables using monthly data from January 1986 to June 2018. The results of Johansen cointegration tests show that there exists at least one cointegrating equation, which indicates that long-run causality from an exchange rate to the Korean stock market will exist. The results of vector error correction estimates show that: for long-term causality, the coefficient of the error correction term is significant with a negative sign, that is, long-term causality from exchange rates to the Korean stock market is observed. For short-term causality, the coefficient of the Japanese yen exchange rate is significant with a positive sign, that is, short-term causality from the Japanese yen exchange rate to the Korean stock market is observed. The coefficient of the financial crises i.e. 1997-1999 Asian financial crisis and 2007-2008 global financial crisis on the endogenous variables in the model and the Korean economy is significant. The result indicates that the financial crises have considerably affected the Korean economy, especially a negative effect on money supply.

Value at Risk with Peaks over Threshold: Comparison Study of Parameter Estimation (Peacks over threshold를 이용한 Value at Risk: 모수추정 방법론의 비교)

  • Kang, Minjung;Kim, Jiyeon;Song, Jongwoo;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.483-494
    • /
    • 2013
  • The importance of financial risk management has been highlighted after several recent incidences of global financial crisis. One of the issues in financial risk management is how to measure the risk; currently, the most widely used risk measure is the Value at Risk(VaR). We can consider to estimate VaR using extreme value theory if the financial data have heavy tails as the recent market trend. In this paper, we study estimations of VaR using Peaks over Threshold(POT), which is a common method of modeling fat-tailed data using extreme value theory. To use POT, we first estimate parameters of the Generalized Pareto Distribution(GPD). Here, we compare three different methods of estimating parameters of GPD by comparing the performance of the estimated VaR based on KOSPI 5 minute-data. In addition, we simulate data from normal inverse Gaussian distributions and examine two parameter estimation methods of GPD. We find that the recent methods of parameter estimation of GPD work better than the maximum likelihood estimation when the kurtosis of the return distribution of KOSPI is very high and the simulation experiment shows similar results.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

A Study on the Dynamic Correlation between the Korean ETS Market, Energy Market and Stock Market (한국 ETS시장, 에너지시장 및 주식시장 간의 동태적 상관관계에 관한 연구)

  • Guo-Dong Yang;Yin-Hua Li
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.189-208
    • /
    • 2023
  • This paper analyzed the dynamic conditional correlation between the Korean ETS market, energy market and stock market. This paper conducted an empirical analysis using daily data of Korea's carbon credit trading price, WTI crude oil futures price, and KOSPI index from February 2, 2015 to December 30, 2021. First, the volatility of the three markets was analyzed using the GARCH model, and then the dynamic conditional correlations between the three markets were studied using the bivariate DCC-GARCH model. The research results are as follows. First, it was found that the Korean ETS market has a higher rate of return and higher investment risk than the stock market. Second, the yield volatility of the Korean ETS market was found to be most affected by external shocks and least affected by the volatility information of the market itself. Third, the correlation between the Korean ETS market and the stock market was stronger than that of the WTI crude oil futures market. This paper analyzed the correlation between the Korean ETS market, energy market, and stock market and confirmed that the level of financialization in the Korean ETS market is quite low.

Improvement about Regulatory System of KRX Derivatives Trading: Focusing on Financial Consumer Protection (장내파생상품거래의 제도개선: 소비자보호를 중심으로)

  • Kim, Chisoo;Cheong, Kiwoong
    • International Area Studies Review
    • /
    • v.16 no.3
    • /
    • pp.239-266
    • /
    • 2012
  • The purpose of this paper is to suggest desirable improvement for KRX derivatives market plagued with many problems in spite of its world level of quantitative growth. In order to try to find desirable improvement for KRX derivatives market which has many problems like that, I suggest various ways of improvement for regulatory system in the future in terms of behavioral regulation for investor protection. First of all, in order to relieve speculative tendency of trading, KOSPI200 option market with ATM-oriented option trading needs to be induced from the market in which OTM-oriented option is now trading. So discount or exemption of brokerage fee for ATM trading and the introduction of market-maker for ATM type can be considered. For the protection of individual investors, we suggest feasible plans such as differential regulation between professional and individual investors, consolidation of basic deposit management, and enlargement of opportunities for risk management education & simulation trading.