Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.
This paper examines and estimates GARCH-VaR models (RiskMetrics, GARCH, IGARCH, GJR and APARCH) with three different distributions such as Gaussian normal, Student-t, Skewness Student-t Distribution using the daily price data from Korean Stock Market during Jan. 1, 1980-Sept. 30, 2004. It also compares them. In-sample test, this finds that for all confidence level as $90%{\sim}99.9%$, the performance and accuracy of IGARCH with ${\lambda}=0.87$ and skewness Student-t distribution are superior to other models and distributions in long position, but GARCH and GJR with Skewness Student-t distribution in short position. For above 99% confidence level, the performance and accuracy of IGARCH with ${\lambda}=0.87$ in both long and short positions are superior to other models and distributions, but Skewness Student-t distribution for long position and Student-t distribution for short position are more accuracy and superior to other distributions. In-out-of sample test, these results also confirm the evidences that the above findings are consistent as well.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.287-295
/
2017
Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.
Journal of the Korea Academia-Industrial cooperation Society
/
제18권4호
/
pp.260-266
/
2017
The global economy, including Korea, has continuously searched for various market-friendly policies and new economic systems in pursuit of the forth industrial revolution. As a result, economic markets have grown, and factors affecting markets have diversified. Therefore, as for many company's decision makers, it has become an important issue to analyze and forecast markets accurately and effectively for rapid and appropriate decision making. In this study, we aim to improve the accuracy and validity of forecast models by applying extended information criteria in existing restricted information criteria to determine optimized modeling for the accurate analysis and prediction of complex market environments. In order to verify the practical use of the extended information criteria adopted in this study, we compare this study employing KOSPI data with previous studies. Experimental results show that applying extended information criteria is more accurate than using the existing information criteria.
Although many theoretical studies have tried to explain the volatility in financial markets using models of herd behavior, there have been few empirical studies on dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. Thus, this paper theoretically extends a continuous beliefs system belonging to an agent based economic model by introducing a term representing agents'mutual dependence into each agent's utility function and derives a SV(stochastic volatility)-type econometric model. From this model the time-varying herding parameters are efficiently estimated by a Markov chain Monte Carlo method. Using monthly data of KOSPI and DOW, this paper provides some empirical evidences for stronger herding in the Korean stock market than in the U.S. stock market, and further stronger herding after the global financial crisis than before it. More interesting finding is that time-varying herd behavior has weak autocorrelation and the global financial crisis may increase its volatility significantly.
Journal of the Korea Academia-Industrial cooperation Society
/
제19권7호
/
pp.174-182
/
2018
Given the ongoing debate in many aspects of finance, more attention may need to focus on corporate R&D expenditures. This study empirically tests financial determinants of R&D expenditures for NYSE-listed and KOSPI-listed firms. Three major hypotheses were postulated to test for corporate R&D outlay. First, proposed variables such as one-year lagged R&D expenditures, market value based leverage, profitability and cash holdings showed significant influence on corporate R&D costs for the sample firms. Moreover, financial factors inclusive of squared one-year lagged R&D expenditures, the interaction effect between one-lagged R&D expenditures and high-growth firm, non-debt tax shield, Tobin's q and a dummy variable to explain differences in accounting treatment between the U.S. and Korea, revealed significant differences between the two samples. Finally, in the conditional quantile regression (CQR) analysis for the R&D-related variables in relation to corporate growth rate, it was found that the NYSE-listed firms had a statistically significant linkage between growth potential and one-year lagged R&D expenditures at lower quantile levels. This study may shed new light on identifying financial factors affecting differences between the U.S. market (as an advanced market) and the Korean market (as an emerging market) regarding the optimal level of R&D investments for shareholders.
Korean Journal of Construction Engineering and Management
/
제11권5호
/
pp.41-52
/
2010
Even though REITs (Real Estate Investment Trusts) are listed on the stock market, REITs have characteristics that allow them to invest in real estate and financing for real estate development. Therefore REITs is related with stock market and construction business and real estate business. Using time-series analysis, this study analyzed REITs in relation to construction businesses, real estate businesses, and the stock market, and derived influence factor of REITs. We used the VAR (vector auto-regression) and the VECM (vector error correction model) for the time-series analysis. This study classified three steps in the analysis. First, we performed the time-series analysis between REITs and construction KOSPI(The Korea composite stock price index) and the result showed that construction KOSPI influenced REITs. Second, we analyzed the relationship between REITs and construction commencement area of the coincident construction composite index, office index and housing price index in real estate business indexes. REITs and the housing price index influence each other, although there is no causal relationship between them. Third, we analyzed the relationship between REITs and the construction permit area of the leading construction composite index. The construction permit area is influenced by REITs, although there is no causal relationship between these two indexes, REITs influenced the stock market and housing price indexes and the construction permit area of the leading composite index in construction businesses, but exerted a relatively small influence in construction starts coincident with the composite office indexes in this study.
Purpose - This paper analyzes the market efficiency focusing on the long memory properties of the domestic futures market. By decomposing futures prices into yield and volatility and looking at the long memory properties of the time series, this study aims to understand the futures market pricing and change behavior and risks, specifically and in detail. Design/methodology/approach - This study analyzes KOSPI 200 futures, KOSDAQ 150 futures, 3 and 10-year government bond futures, US dollar futures, yen futures, and euro futures, which are among the most actively traded on the Korea Exchange. To analyze the long memory and market efficiency, we used the Variance Ratio, Rescaled-Range(R/S), Geweke and Porter-Hudak(GPH) tests as semi- parametric methods, and ARFIMA-FIGARCH model as the parametric method. Findings - It was found that all seven futures supported the efficiency market hypothesis because the property of long memory turned out not to exist in their yield curves. On the other hand, in futures volatility, all 7 futures showed long memory properties in the analysis, which means that if new information is generated in the domestic futures market and the market volatility once expanded due to the impact, it does not decrease or shrink for a long period of time, but continues to affect the volatility. Research implications or Originality - The results of this paper suggest that it can be useful information for predicting changes and risks of volatility in the domestic futures market. In particular, it was found that the long memory properties would be further strengthened in the currency futures and bond rate futures markets after the global financial crisis if the regime changes of the domestic financial market are taken into account in the analysis.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
/
pp.283-286
/
2007
This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.
Journal of the Korean Operations Research and Management Science Society
/
제40권4호
/
pp.35-48
/
2015
We analyze the systemic risk based on the information flows using the variance decomposition, DebtRank methods, and the Industry Sector Indices during 2001. 01 to 2015. 08. Using the KOSPI stock market as our setting, we find that (i) the systemic risk calculated by information flows of variance decompositions method shows strong positive relations with the market volatility, (ii) the magnitude of systemic risk measured from the information flows network by DebtRank method increases after the subprime financial crisis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.