• Title/Summary/Keyword: KOSPI Market

Search Result 309, Processing Time 0.026 seconds

The Effects of Ownership Structure on Capital Structure: Comparison of Listed Large Firms and SMEs in Korea (K-IFRS 도입 전후 기업의 소유구조가 자본구조에 미치는 영향: 상장 대기업과 중소기업의 비교)

  • Mun, Hee-Suk;Kim, Moon-Kyum
    • Korean small business review
    • /
    • v.42 no.3
    • /
    • pp.195-220
    • /
    • 2020
  • In this study, we examined the effects of major shareholder's holdings and foreign shareholder's holdings on capital structure with the samples of listed non-financial firms in KOSPI and KOSDAQ. More specifically, we conduct the data on 7,074 large firms and 2,394 SMEs(Small-Medium Enterprises) before and after the adoption of K-IFRS from 2002 to 2019. The main results can be summarized as follows. The results indicate that the adoption of K-IFRS affects the capital structure of large firms more than SMEs. The major shareholder's holdings and the foreign shareholder's holdings of the large and SMEs listed on the KOSPI and the KOSDAQ market have a significant effect on the leverage ratio. It can be seen that major shareholders of large firms and SMEs reduce the leverage ratio by recognizing the use of debt as financial risk. In addition, it can be seen that regardless of whether or not K-IFRS is adopted, foreign shareholders recognize the use of debt as financial risk and reduce the leverage ratio in order to reduce the investment risk.

Selecting Stock by Value Investing based on Machine Learning: Focusing on Intrinsic Value (머신러닝 기반 가치투자를 통한 주식 종목 선정 연구: 내재가치를 중심으로)

  • Kim, Youn Seung;Yoo, Dong Hee
    • The Journal of Information Systems
    • /
    • v.32 no.1
    • /
    • pp.179-199
    • /
    • 2023
  • Purpose This study builds a prediction model to find stocks that can reach intrinsic value among KOSPI and KOSDAQ-listed companies to improve the stability and profitability of the stock investment. And investment simulations are conducted to verify whether stock investment performance is improved by comparing the prediction model, random stock selection, and the market indexes. Design/methodology/approach Value investment theory and machine learning techniques are applied to build the model. Various experiments find conditions such as the algorithm with the best predictive performance, learning period, and intrinsic value-reaching period. This study selects stocks through the prediction model learned with inventive variables, does not limit the holding period after buying to reach the intrinsic value of the stocks, and targets all KOSPI and KOSDAQ companies. The stock and financial data are collected for 21 years (2001-2021). Findings As a result of the experiment, using the random forest technique, the prediction model's performance was the best with one year of learning period and within one year of the intrinsic value reaching period. As a result of the investment simulation, the cumulative return of the prediction model was up to 1.68 times higher than the random stock selection and 17 times higher than the KOSPI index. The usefulness of the prediction model was confirmed in that the number of intrinsic values reaching the predicted stock was up to 70% higher than the random selection.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

A Study to Improve the Return of Stock Investment Using Genetic Algorithm (유전자 알고리즘을 이용한 주식투자 수익률 향상에 관한 연구)

  • Cho He Youn;Kim Young Min
    • The Journal of Information Systems
    • /
    • v.12 no.2
    • /
    • pp.1-20
    • /
    • 2003
  • This paper deals with the application of the genetic algorithm to the technical trading rule of the stock market. MACD(Moving Average Convergence & Divergence) and the Stochastic techniques are widely used technical trading rules in the financial markets. But, it is necessary to determine the parameters of these trading rules in order to use the trading rules. We use the genetic algorithm to obtain the appropriate values of the parameters. We use the daily KOSPI data of eight years during January 1995 and October 2002 as the experimental data. We divide the total experimental period into learning period and testing period. The genetic algorithm determines the values of parameters for the trading rules during the teaming period and we test the performance of the algorithm during the testing period with the determined parameters. Also, we compare the return of the genetic algorithm with the returns of buy-hold strategy and risk-free asset. From the experiment, we can see that the genetic algorithm outperforms the other strategies. Thus, we can conclude that genetic algorithm can be used successfully to the technical trading rule.

  • PDF

Option Pricing with Leptokurtic Feature (급첨 분포와 옵션 가격 결정)

  • Ki, Ho-Sam;Lee, Mi-Young;Choi, Byung-Wook
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.211-233
    • /
    • 2004
  • This purpose of paper is to propose a European option pricing formula when the rate of return follows the leptokurtic distribution instead of normal. This distribution explains well the volatility smile and furthermore the option prices calculated under the leptokurtic distribution are shown to be closer to the market prices than those of Black-Scholes model. We make an estimation of the implied volatility and kurtosis to verify the fitness of the pricing formula that we propose here.

  • PDF

A Portfolio Selection Strategy with Consideration of Growth Potential of Corporations (기업의 성장가능성을 고려한 포트폴리오 선택 전략)

  • Choi, Da-Young;Ahn, Beum-Jun;Shin, Hyun-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3849-3855
    • /
    • 2011
  • This study presents an efficient strategy for selecting portfolio by evaluating growth potential of a corporation based on dividend. Through preliminary experiments, we extract 4 categories to sort out prospective stocks and develop a scoring table including criteria and formulas used to calculate scores for each category. In order to show the effectiveness of the portfolio selected by scoring table, we constructed 3 portfolios for every 4 years (2007-2010) out of 927 listed companies in KRX and proved that our portfolios are superior to market portfolio in terms of rate of return.

PREDICTING KOREAN FRUIT PRICES USING LSTM ALGORITHM

  • PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.23-48
    • /
    • 2022
  • In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.

The Relationship between Labor Union and Advertising Expenditures: A Focus on Distribution Firms

  • SHIN, Ilhang
    • Journal of Distribution Science
    • /
    • v.18 no.5
    • /
    • pp.61-70
    • /
    • 2020
  • Purpose: The aim of this paper is to investigate whether labor unions are the main determinants of advertising expenditures and whether market competition has an impact on the relation between labor unions and advertising expenditures, focusing on distribution firms. Research design, data, and methodology: Using 914 observations of KOSPI market from 2001 to 2009 in distribution firms, this paper examines whether labor union is related to advertising expenditures, focusing on distribution firms. For this, this paper employs not only OLS regressions method but also 2SLS regressions method in which Female_Ratio(percentage of female employees) is used as instrumental. Results: This paper finds that in the distribution firms, labor union, as a major stakeholder of the company is, in terms of statistic, negatively associated with advertising expenditures. Also, market competition, in this paper, doesn't have real impact on the relation between labor unions and advertising expenditures. Conclusions: This paper presents the influence of labor unions, as a major factor in determining advertising expenditures. An executive who understands that as the amount of advertising expenditure increases, the total pie of wages to be attributed to the members of labor union will decrease.

Relationship between Firm Efficiency and Stock Price Performance (기업의 운영 효율성과 주식 수익률 성과와의 관계)

  • Lim, Sungmook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.81-90
    • /
    • 2018
  • Modern investment theory has empirically proved that stock returns can be explained by several factors such as market risk, firm size, and book-to-market ratio. Other unknown factors affecting stock returns are also believed to still exist yet to be found. We believe that one of such factors is the operational efficiency of firms in transforming inputs to outputs, considering the fact that operations is a fundamental and primary function of any type of businesses. To support this belief, this study intends to empirically study the relationship between firm efficiency and stock price performance. Firm efficiency is measured using data envelopment analysis (DEA) with inputs and outputs obtained from financial statements. We employ cross-efficiency evaluation to enhance the discrimination power of DEA with a secondary objective function of aggressive formulation. Using the CAPM-based performance regression model, we test the performance of equally weighted portfolios of different sizes selected based upon DEA cross-efficiency scores along with a buy & hold trading strategy. For the empirical test, we collect financial data of domestic firms listed in KOSPI over the period of 2000~2016 from well-known financial databases. As a result, we find that the porfolios with highly efficient firms included outperform the benchmark market portfolio after controlling for the market risk, which indicates that firm efficiency plays a important role in explaining stock returns.

An Examination on Asymmetric Volatility of Firm Size Stock Indices (기업규모 주가지수의 비대칭적 변동성에 관한 연구)

  • Lee, Minkyu;Lee, Sang Goo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.387-394
    • /
    • 2016
  • The volatility in the stock market responds differently to information types. That is, the asymmetric volatility exists in the stock market which responds more to unexpected negative returns due to bad news than unexpected positive returns due to good news. This paper examines the asymmetric response of the volatility of KOSPI, large-cap, middle-cap, and small-cap indices returns which is announced in Korea exchange (KRX) by using the MA-GJR model and the MA-EGARCH model. According to empirical analyses, it shows that the asymmetric response of volatility exists in all indices regardless of volatility estimation models and the degree of the asymmetric volatility response of the small-cap index returns is greater than that of the large-cap index returns. Moreover, this results also observed robustly during the period of both before and after the global financial crisis.