• Title/Summary/Keyword: KOREAN RED PINE

Search Result 427, Processing Time 0.024 seconds

Soil Physical and Chemical Properties of Kaolinite Opencast Mines and Adjacent Red Pine Forests in Sancheong-gun (산청군 고령토(백토) 노천 광산 채굴지와 인접 소나무 임분의 토양 물리·화학적 성질)

  • Kim, Kyung Tae;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.382-389
    • /
    • 2020
  • Soil properties in opencast mines are a key factor in reclamation (revegetation) of mining areas. In this study we determined the soil physical and chemical properties of kaolinite tailings, reclaimed areas, and adjacent natural red pine (Pinus densiflora S. et Z.) forests in kaolinite opencast mines in Sancheong-gun, Gyeongsangnam-do. Six sites were chosen for collection of soil samples to determine soil physical and chemical properties at a soil depth of 10 cm. Soil bulk density was significantly higher (P < 0.05) in the kaolinite tailings (1.51 g·cm-3) than in the reclaimed areas (1.19 g·cm-3) and red pine forests (0.93 g·cm-3), whereas air phase in the kaolinite tailings (14.2%) was significantly lower than in the red pine forests (32.6%). Clay content in the red pine forests was significantly higher than in the reclaimed areas (18.7%) or kaolinite tailings (14.8%), whereas soil structural stability index was significantly lower in the reclaimed areas (1.61%) and kaolinite tailings (0.87%) than in the red pine forests (7.75%). Soil pH was significantly higher in the kaolinite tailings (pH 6.68) and reclaimed areas (pH 6.27) than in the red pine forests (pH 5.31). Soil organic carbon and total nitrogen were significantly higher in the red pine forests (C: 36.03 mg·g-1; N: 2.08 mg·g-1) than in the reclaimed areas (C: 5.00 mg·g-1; N: 0.31 mg·g-1) than in the kaolinite tailings (C: 2.12 mg·g-1; N: 0.07 mg g-1). The amount of available phosphorus was not significantly different among the three treatments. The concentration of exchangeable potassium was significantly lower in the kaolinite tailings (0.08 cmolc·kg-1) than in the reclaimed areas (0.21 cmolc·kg-1) and red pine forests (0.30 cmolc·kg-1). These results indicate that, because of high soil bulk density and low soil organic carbon, total nitrogen, available phosphorus, and exchangeable potassium in kaolinite tailings and reclaimed mining areas, soil nutrient management is needed in order to reclaim the vegetation in these type of areas.

Possibility of Wood Classification in Korean Softwood Species Using Near-infrared Spectroscopy Based on Their Chemical Compositions

  • Park, Se-Yeong;Kim, Jong-Chan;Kim, Jong-Hwa;Yang, Sang-Yun;Kwon, Ohkyung;Yeo, Hwanmyeong;Cho, Kyu-Chae;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • This study was to establish the interrelation between chemical compositions and near infrared (NIR) spectra for the classification on distinguishability of domestic gymnosperms. Traditional wet chemistry methods and infrared spectral analyses were performed. In chemical compositions of five softwood species including larch (Larix kaempferi), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), cypress (Chamaecyparis obtusa), and cedar (Cryptomeria japonica), their extractives and lignin contents provided the major information for distinction between the wood species. However, depending on the production region and purchasing time of woods, chemical compositions were different even though in same species. Especially, red pine harvested from Naju showed the highest extractive content about 16.3%, whereas that from Donghae showed about 5.0%. These results were expected due to different environmental conditions such as sunshine amount, nutrients and moisture contents, and these phenomena were also observed in other species. As a result of the principal component analysis (PCA) using NIR between five species (total 19 samples), the samples were divided into three groups in the score plot based on principal component (PC) 1 and principal component (PC) 2; group 1) red pine and Korean pine, group 2) larch, and group 3) cypress and cedar. Based on the chemical composition results, it was concluded that extractive content was highly relevant to wood classification by NIR analysis.

Quantifying Litterfall Input from the Stand Parameters of Korean Red Pine (Pinus densiflora S. et Z.) Stands in Gyeongnam Province

  • Kim, Choonsig;Baek, Gyeongwon;Choi, Byeonggil;Baek, Gyeongrin;Kim, Hojin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.569-576
    • /
    • 2021
  • This study developed an estimation model for litterfall input using the stand parameters (basal area, stand density, mean DBH, and carbon stocks of the aboveground tree biomass) collected from the Korean red pine (Pinus densiflora S. et Z.) stands of seven regions in Gyeongsangnam-do. The mean annual litterfall was 2,779 kg ha-1 year-1 for needles, 883 kg ha-1 year-1 for miscellaneous, 611 kg ha-1 year-1 for broadleaved, 513 kg ha-1 year-1 for branches, and 340 kg ha-1 year-1 for bark litter. The mean annual total litterfall was 5,051 kg ha-1 year-1. Litterfall components were significantly correlated with stand parameters, except for broadleaved litter. A stronger correlation was observed between the carbon stock of the aboveground tree biomass and all the litterfall components compared with the other stand variables. The allometric equations for all the litterfall components were significant (P < 0.05), with the stand parameters accounting for 5%-43% and 8%-42% of the variation in the needle litter and total litterfall, respectively. The results indicated that the annual litterfall inputs of the Korean red pine stands on a regional scale can be effectively estimated by allometric equations using the basal area and carbon stocks of the aboveground tree biomass.

Studies on Red Wood Ants (Formica sp.) for the Control of Pine Caterpillar (Dendrolimus spectabilis BUTLER) (불개미를 이용한 송충의 방제에 관한 연구)

  • Kim Chang-Hyo;Kim Jong-Man
    • Korean journal of applied entomology
    • /
    • v.12 no.3
    • /
    • pp.109-114
    • /
    • 1973
  • In order to use the red wood ants (Formica sp.) as a resources of natural enemy of pine caterpillar (Dendrolimus spectabilis Butler), the distribution of red wood ants in Gyeongnam Province, general ecology, and the limit of transplantation was investigated. The results obtained were summarized as follows: 1. Red wood ants preyed upon 1st to 3rd instar of pine caterpillar. 2. Red wood ants were distributed to 474 locations of 18 county, covering 7,702, $559m^2$ in Gyeongnam Province. 3. The distribution of red wood ants was $60\%$ in lower part, $39.5\%$ in middle part and $0.5\%$ in upper part of the mountain. 4. It seems that the height of building nest was directly proportional to the total number of each colony, showing the regression equation of Y=6,200 X-27,813, and the building nest was concerned with soil moisture. 5. It was possible to transplant the red wood ants from May to September, md 5 nests were built by the transplanted ants within one year.

  • PDF

Synthesis of Pine Tree Ash and Red Pepper Stem Ash (소나무재와 고추나무대재 합성에 관한 연구)

  • Han, Young-Soon;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.393-401
    • /
    • 2006
  • The development of Korean glaze originated from the development of ash glazes. Ash not only has strong solubility but also can shows the glaze a variety of different colors according to what the glaze has in it as the main component. In addition, it gives a feeling of lucidness and softness. For these reasons, there are a lot of needs for ash and many potters want to take advantage of ashes as glaze. But natural ashes have not been widely used as glaze primarily because it is relatively hard to find or manufacture. Considering the difficulty of finding or manufacturing natural ashes, this study aims to formulate synthetic ash which not only is available to the potters in general but also has the sam ε characteristics as the natural ashes. To achieve this aim, this study examines the characteristics of the pine tree ash, the main component of the glaze of celadon porcelains, and the red pepper stem ash, the main component of the brown glaze, both of which have been used by the Korean traditional potters. In this study, the alkaline component of the glaze. A important ingredient when the ashes are synthesized, was supplied by mixing of $Na_2CO_3$, Chungju limestone and rice straw ash. Furthermore, the synthetic ash, when it shows no change of pH in its composition rate of 6:2:2, was found to be usable as the most stable material. In conclusion, the formula which frits some raw $materials-Na_2CO_3$, Chungju limestone and rice straw ash-can duplicate the synthetic ash which is simila to the natural ash.

Which Environmental Factors Caused Lammas Shoot Growth of Korean Red Pine?

  • Lee, Chang-Seok;Song, Hye-Gyung;Kim, Hye-Soo;Lee, Bit-Na-Ra;Pi, Jeong-Hoon;Cho, Yong-Chan;Seol, Eun-Sil;Oh, Woo-Seok;Park, Sung-Ae;Lee, Seon-Mi
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.101-105
    • /
    • 2007
  • Lammas growth, a rare phenomenon for Korean red pine (Pinus densiflora), occurred in 2006. Lammas shoots showed higher frequency and longer length in Seoul's hotter urban center than in urban boundary or suburban forest sites. Frequency and length showed a close correlation with urbanization density and vegetation cover expressed in NDVI. Air temperature in the late summer of 2006 was more than $1^{\circ}C$ higher than an average year. Of the predominant environmental signals that modulate bud flush, only temperature changed significantly during the year. Differences in temperature between the urban centers, urban boundaries and suburban forests correlated with varying land-use density. The rise in temperature likely spurred lammas growth of the Korean red pine. Symptoms of climate change are being detected throughout the world, and its consequences will be clearer in the future. Considerate interest in the responses of ecological systems to the variable changes is required to prepare for unforeseeable crises. Monitoring of diverse ecological phenomena at Long Term Ecological Research sites could offer harbingers of change.

Dendro-anatomical Study for Identification of Pine at Korea (국내산 소나무 식별을 위한 연륜해부학적 연구)

  • Lee, Kwang Hee;Seo, Yeon Ju;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • This study identified Korean red pine (Pinus densiflora) and exotic pines (Pinus resinosa, Pinus sylvestris) with a similar anatomical structure using a dendro-anatomical method that applied dendrochronology, tracheid length, and uniseriate ray cell size. Korean red pine samples were collected from 13 national parks, while exotic pine samples were secured from two wood importers. Tracheid length was measured by distinguishing earlywood from latewood, and uniseriate ray height and cell number were determined. As the exotic pine tree-ring chronology was consistent with the foreign standard tree-ring chronology and displayed high statistical significance, the country and region where the pine samples had been felled and the exact felling date were confirmed. According to the results, which compared tracheid length and uniseriate ray size, no difference was observed between the Korean red and Russian pines. However, the tracheid length of the Russian pines turned out to be slightly longer than the length of the Korean red pine. Additional research securing a larger number of exotic pines (P.resinosa, P.sylvestris) is required to yield more accurate results in the future.

Carbon and Nitrogen Responses of Litterfall Components by NPK and PK Fertilizers in a Red Pine (Pinus densiflora S. et Z.) Stand

  • Park, Seong-Wan;Baek, Gyeongwon;Kim, Seongjun;Yang, A-Ram;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study was conducted to determine the carbon (C) and nitrogen (N) response of litterfall components as affected by N addition in compound fertilizer in a Korean red pine (Pinus densiflora S. et Z.) stand in southern Korea. Litterfall in a mature red pine stand was collected for two years following compound fertilizer application ($N_3P_4K_1$; $P_4K_1$) and no fertilization (control). The C concentration of litterfall components was not significantly (P > 0.05) different between the $N_3P_4K_1$ and the control plots, whereas the N concentration of the litterfall components was significantly higher in the $N_3P_4K_1$ plot than in the control plot. The $N_3P_4K_1$ and $P_4K_1$ additions induced a lower C/N ratio of litterfall components compared with the control plot. Annual C and N fluxes via litterfall components were not affected by the $N_3P_4K_1$ addition over the study period, except for reproduction litter. Annual N fluxes via reproduction litter were significantly higher in the $N_3P_4K_1$ plot than in the control plot. Thus, the $N_3P_4K_1$ and $P_4K_1$ additions could modify differently nutrient distribution of the forest floor and mineral soils in a red pine stand. These results indicate that N concentration and C/N ratio in litterfall components are more susceptible to fertilizer application than the C response in litterfall components.

Evaluation of Bearing Strength of Self-Tapping Screws according to the Grain Direction of Domestic Pinus densiflora

  • LEE, In-Hwan;KIM, Keonho;SHIM, Kug-bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • To evaluate the bearing strength of red pine cross-laminated timber (CLT) with self-tapping screw (STS), which is widely used as a fastener for connection in CLT building, the bearing test was conducted. Accoring to the STS's diameters (8, 10, 12 mm), the bearing test specimens with half hole were manufactured. Bearing strength was compared and reviewed in consideration of the configuration in STS and the loading direction to the grain of red pine. As a result of the bearing test on the STS's diameter, the yield bearing load increases as the larger diameter of the STS in all directions of the red pine. The bearing strength of the thread part (thread + tip) was higher than the shank part (shank + shank cutter). In compared with the directions to the grain of red pine, the bearing strength of the cross section parallel to the loading direction was the highest, and the tangent section was the lowest bearing strength. The average bearing strength of the loading direction in parallel to the grain was 23.43 MPa, which was about 45% higher than the average 16.16 MPa in perpendicular to the grain. The predicted bearing strength calculated by Eurocode (EN) and Korean Building Code (KBC)'s equation was lower than the experimental value. It is nessesary to propose the new equations of bearing strength reflected the configuration information of STS.

Topographic and Meteorological Characteristics of Pinus densiflora Dieback Areas in Sogwang-Ri, Uljin (울진 소광리 산림유전자원보호구역 내 금강소나무 고사지역의 지형 환경 특성 분석)

  • Kim, Jaebeom;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • Korean Red Pine (Pinus densiflora) has been protected and used as the most ecologically and socio-culturally important tree species in Korea. However, as dieback of Korean red pines has occurred in the protected area of the forest genetic resources. The aims of this study is to identify causes for dieback of pine tree by investigating topographical characteristics of pine tree dieback and its correlation to meteorological factors. We extracted the dead trees from the time series aerial images and analyzed geomorphological characteristics of dead tree concentration area. As a result, 1,956 dead pine trees were extracted in the study region of 2,600 ha. Dieback of pine trees was found mostly in the areas with high altitude, high solar radiation, low topographic wetness index, south and south-west slopes, ridgelines, and high wind exposure compared to other living pine forest area. These areas are classified as high temperature and high drought stress regions due to micro-climatic characteristics affected by topographic factors. As high temperature and drought stress are generally increasing with climate change, we can evaluated that a risk of pine tree dieback is also increasing. Based on these geomorphological characteristics, we developed a pine tree dieback risk map using Maximum Entropy Model (MaxEnt), and it can be useful for establishing Korean red pine protection and management strategies.