• Title/Summary/Keyword: KOMPSAT-1 EOC

Search Result 85, Processing Time 0.022 seconds

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

Land Cover Classification Using Landsat TM with KOMPSAT-1 EOC and SCS-CN Direct Runoff Estimation (Landsat TM과 KOMPSAT-1 EOC 영상을 이용한 토지피복분류 및 SCS-CN 직접유출량 산정)

  • Kwon Hyong Jung;Kim Seong Joon;Koh Deuk Koo
    • KCID journal
    • /
    • v.7 no.2
    • /
    • pp.66-74
    • /
    • 2000
  • The purpose of this study is to obtain land cover classification map by using remotely sensed data : Landsat TM and KOMPSAT-1 EOC, and to estimate SCS-CN direct runoff by using point rainfall(Thiessen network) and spatial rainfall(surface interpolation) f

  • PDF

Evaluation of Geometric Modeling for KOMPSAT-1 EOC Imagery Using Ephemeris Data

  • Sohn, Hong-Gyoo;Yoo, Hwan-Hee;Kim, Seong-Sam
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.218-228
    • /
    • 2004
  • Using stereo images with ephemeris data from the Korea Multi-Purpose Satellite-1 electro-optical camera (KOMPSAT-1 EOC), we performed geometric modeling for three-dimensional (3-D) positioning and evaluated its accuracy. In the geometric modeling procedures, we used ephemeris data included in the image header file to calculate the orbital parameters, sensor attitudes, and satellite position. An inconsistency between the time information of the ephemeris data and that of the center of the image frame was found, which caused a significant offset in satellite position. This time inconsistency was successfully adjusted. We modeled the actual satellite positions of the left and right images using only two ground control points and then achieved 3-D positioning using the KOMPSAT-1 EOC stereo images. The results show that the positioning accuracy was about 12-17 m root mean square error (RMSE) when 6.6 m resolution EOC stereo images were used along with the ephemeris data and only two ground control points (GCPs). If more accurate ephemeris data are provided in the near future, then a more accurate 3-D positioning will also be realized using only the EOC stereo images with ephemeris data and without the need for any GCPs.

  • PDF

Detecting Land Cover Change in an Urban Area by Image Differencing and Image Ratioing Techniques (영상의 차연산과 비연산 기법에 의한 도시지역의 토지피복 변화탐지)

  • Lee, Jin-Duk;Jo, Chang-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.43-52
    • /
    • 2004
  • This study presents the application of aerial photographs and the Korea Multi-Purpose Satellite, KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting change in an urban area that has been rapidly growing. For the study, we used multi-temporal images which were acquired by two different sensors. Image registration and resampling were rallied out before performing change detection in a common reference system with the same spatial resolution. for all of the images. Results from image differencing and image ratioing techniques show that panchromatic aerial photographs and KOMPSAT-1 EOC images collected by different sensors have potential to detect changes of urban features such as building, road and other man-made structure. And the optimal threshold values were suggested in applying image differencing and image ratioing techniques for change detection.

  • PDF

The Land Cover Change Detection of an Urban Area from Aerial Photos and KOMPSAT EOC Satellite Imagery (항공사진과 KOMPSAT EOC 위성영상으로부터 도시지역의 토지피복 변화 검출)

  • 조창환;배상우;이성순;이진덕
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.177-182
    • /
    • 2004
  • This study presents the application of aerial photographs and KOMPSAT-1 Electro-Optical Camera(EOC) imagery in detecting the change of an urban area that has been rapidly growing. For the study, we used multi-time images which were acquired by two different sensors. For all of the images, the coordinate reference system and scale were first made identical through the 1st and 2nd geometric corrections and then image resampling were carried out to spatial resolution of 7m to detect changes under the same conditions. The Image Differencing was employed as a change detection technique. It was confirmed to be able to detect the changes of terrestrial surface like building, structure and road features from aerial photos and KOMPSAT EOC images with single band. The changes could be detected to some extent with the images acquired from different kinds of sensors as well as the same kinds of sensors.

  • PDF

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land (간척지 조사를 위한 KOMPSAT-1 EOC 영상과 MODIS 영상의 중합)

  • 신석효;김상철;안기원;임효숙;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.171-180
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land, this paper compares the results of Intensity Hue Saturation (IHS), Principal Component Analysis (PCA), Color Normalized(CN) and High Pass Filter(HPF) methods used to merge the information contents of the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data. The comparison is made by visual evaluation of three-color combination images of IHS, PCA, CN and HPF results based on spatial and spectral characteristics. The use of a contrasted EOC panchromatic image as a substitute for intensity in merged images with MODIS bands 1, 2 and 3 was found to be particularly effective in this study.

  • PDF

Effect of the Signal-to-Noise Power Spectra Ratio On MTF compensated EOC images

  • Kang, Chi-Ho;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.202-207
    • /
    • 2002
  • EOC (Electro-Optical Camera) of KOMPSAT-1 (Korea Multi-Purpose SATellite) has been producing land imageries of the world since January 2000. After image data are acquired by EOC, they are transmitted from satellite to ground via X-band RF signal. Then, EOC image data are generated and pass through radiometric and geometric corrections to generate standard products of EOC images. After radiometric correction on EOC image data, Modulation Transfer Function (MTF) compensation is applicable on EOC images with user's request for better image quality. MTF compensation is concerned with filtering EOC images to minimize the effect of degradations. For Image Receiving and Processing System (IRPE) at KOMPSAT Ground Station (KGS), Wiener filter is used in MTF compensation for EOC images. If the Pointing Spread Function (PSF) of EOC system is known, signal-to-noise power spectra ratio is the only factor in the determination of Wiener filter. In this paper, MTF compensation in IRPE at KGS is introduced and MTF compensated EOC 1R images are generated using Wiener filters with various signal-to-noise power spectra ratios. MTF compensated EOC 1R images are correlated with EOC 1R images for observing linearities between them. As a result, the effect of signal-to-noise power spectra ratio is shown on MTF compensated EOC 1R images.

  • PDF

3D Geometric Modeling of KOMPSAT-1 Stereo Strip Imagery (KOMPSAT-1입체 스트립 영상의 3차원 기하 모델링)

  • 유환희;손홍규;김성삼;정주권
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.340-348
    • /
    • 2003
  • 비접근지역이나 넓은 지역의 3차원 위치정보를 취득하기 위하여 본 연구에서는 KOMPSAT-1호 EOC 스트립 영상과 헤더자료를 이용한 3차원 기하모델링 기법을 개발하고 오차특성을 분석하였다. ECEF 좌표계로 제공되는 위성 헤더자료를 위성궤도 모델링에서 일반적으로 사용되는 ECI 좌표계로 모델링하는 경우와 ECEF 좌표계로 모델링하는 경우에 대해 비교 분석하고 단영상으로 제공되는 KOMPSAT-1호 EOC 영상을 스트립영상으로 재구성한 후 기준점 배치에 따른 오차보정기법을 제시하고 오차특성을 분석하였다.

  • PDF

Comparative Analysis of SSM/I and AMSR-E Sea Ice Concentration using Kompsat-l EOC Images of the Antarctic (Kompsat-l EOC 영상을 이용한 남극의 SSM/I 와 AMSR-E 해빙 면적비 비교 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.8-13
    • /
    • 2007
  • 2005년 남극의 해빙을 촬영한 Kompsat-1 EOC 영상을 이용하여 SSM/I와 AMSR-E 해빙 면적비를 비교, 분석하였다. EOC 영상은 남극의 봄철에 해당하는 9-11월 사이에 남극 대륙의 가장자리를 가로지르는 11 개 궤도로부터 총 676개 영상이 획득되었으며, 이 중 대기 및 광량 조건이 양호한 68개 의 영상을 선별하였다. EOC 영상에 감독분류 방볍 을 적 용하여 표면 유형 을 White ice(W), Grey ice(G), Dark-grey ice(D), Ocean(O)로 분류하였고 해빙 면적비를 산출하였으며, 이를 NASA Team Algorithm(NT)으로 계산된 SSM/I 해빙 면적비, NASA Team2 Algorithm(NT2)으로 계산된 AMSR-E 해빙 면적비와 비교하였다. 남극의 봄철에 SSM/I 해빙 면적비는 EOC W+G 면적비와 잘 일치하였고,AMSR-E 해빙 면적비는 EOC W+G+D 면적비와 좋은 상관성을 나타내었다. 따라서 이 시기의 남극 SSM/I NT 해빙 면적비는 W와 G만을 반영하며, AMSR-E NT2 해빙 면적비는 D도 포함하는 것을 알 수 있었다. 또한 AMSR-E가 SSM/I보다 높은 해빙 면적비를 나타내는 것을 확인하였으며,두 수동 마이크로파 해빙 면적비의 차이는 EOC D 면적비와 높은 상관성을 보였다. 이로부터 EOC 영상에서 분류된 D와 NT2에 서 고려되는 Ice type C가 서로 유사한 해빙 유형임을 추정할 수 있었다.

  • PDF