• Title/Summary/Keyword: KOMPSAT I

Search Result 64, Processing Time 0.027 seconds

A Comparative Analysis for the Digitizing Accuracy by Satellite Images for Efficient Shoreline Extraction (효율적인 해안선 추출을 위한 위성영상별 디지타이징 정확도 비교 분석)

  • Kim, Dong-Hyun;Park, Ju-Sung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.147-155
    • /
    • 2015
  • The existing field survey and aerial photography involve the waste of manpower and economic loss in the coastline survey. To minimize these disadvantages, the digitization for efficient coastline extraction was conducted in this study using the points extracted from the standard coastline of the approximate highest high water and the diverse satellite images (KOMPSAT-3, SPOT-5, Landsat-8 and Quickbird-2), and the comparative accuracy analysis was conducted. The differences between the standard coastline points of the approximate highest high water and the coastline of each satellite were smallest for KOMPSAT-3, followed by Quickbird-2, SPOT-5 and Landsat-8. The significant probability from between the multipurpose applications satellite and Quickbird-2 (significant probability two-tailed) was statistically significant at 1% significance level. Therefore, high-resolution satellite images are required to efficiently extract the coastline, and KOMPSAT-3, from which images are easily acquired at a low cost, will enable the most efficient coastline extraction without external support.

A Study on Accurate Alignment Measurement of Dual Thruster Module Using Theodolite (데오드라이트를 이용한 이중 추력기 모듈의 정밀정렬측정에 관한 연구)

  • Hwang, Kwon-Tae;Moon, Guee-Won;Cho, Chang-Lae;Lee, Dong-Woo;Lee, Sang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1399-1404
    • /
    • 2012
  • Because satellites operate in space, it is impossible to repair them when they malfunction. Therefore, to ensure the normal function of the payload used in the satellites, accurate assembly and installation of parts are crucial. To prevent abnormal functioning in the extreme environments during launch and in space, it is essential to test changes at the parts and system levels by performing alignment measurement before and after the launch environment test and the space environment test. Recently, noncontact three-dimensional precision machinery for medium- and large-sized parts has been developed. One of these is the theodolite measurement system, which is widely used in the aerospace industry. This study measures the angle of the dual thruster module that is used to control the attitude of KOMPSAT by using a theodolite, and alignment measurement and a reliability analysis are performed.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.

The Implementation of Communication Unit for KOMPSAT-II

  • Lee Sang-Taek;Lee Jong-Tae;Lee Sang-Gyu;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.457-459
    • /
    • 2004
  • The Channel Coding Unit (CCU) is an integral component of Payload Data Transmission System (PDTS) for the Multi-Spectral Camera (MSC) data. The main function of the CCU is channel coding and encryption. CCU has two channels (I & Q) for data processing. The input of CCU is the output of DCSU (Data Compression & Storage Unit). The output of CCU is the input of QTX which modulate data for RF communication. In this paper, there are the overview, short H/W description and operation concept of CCU.

  • PDF

The Estimation of Fuel Consumption of Satellites and Orbit Analysis under Orbit Perturbations (궤도섭동을 고려한 저궤도 위성의 추진제 소모량 예측 및 궤도 해석)

  • 정도희;이상기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.65-70
    • /
    • 2003
  • In this work variations of orbital parameters are first derived from the perturbation equations using difference equation method under Earth oblateness and atmospheric drag. A simple and effective scheme is proposed to compute the required delta v and fuel consumption to compensate for atmospheric drag. The scheme is applied to KOMPSAT example. And by means of numerical simulations we quantitatively analyze influences due to each perturbation source, i.e., nonspherical Earth, atmospheric drag, third body gravities (Sun, Moon), and solar radiation.

  • PDF

A Study on Destriping of OSMI (OSMI 줄무늬 제거에 대한 연구)

  • 안유환;유주형;문정언
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.247-250
    • /
    • 2004
  • OSMI/KOMPSAT-I 위성의 Level-0 영상자료의 줄무늬 제거에 대한 연구가 수행되었다. 이 줄무늬 원인은 크게 2가지로 구분되었다. 하나는 96 pixel CCD의 전반부와 후반부에 따라 얻어지는 신호크기 차이 있으며, 다른 하나는 pixel간의 감도의 차이가 있는 것으로 나타났다. 문제는 각 영상자료마다 이들의 보정계수가 일치하지 못하여 매 영상으로부터 새로운 보정계수가 필요하다는 것이다. 줄무늬 제거의 근본적인 접근은 바로 2가지 문제를 해결하는 방향으로 접근하였다. 즉, 첫 번째 문제인 전후반부의 CCD pixel에서 얻어지는 신호의 크기 차이가 감도의 차이인지 아니면 upset 값의 차이인지가 규명되었고, 동시에 각 센서 pixel의 감도 역시 신호의 세기에 따라 감도가 다른 것으로 나타났다. 본 연구에서는 이러한 모든 줄무늬 보정 정보를 매 영상마다 독립적으로 얻게 하여 OSMI 위성영상의 질을 보다 높일 수 있었다.

  • PDF

Adaptation method of multivariate fuzzy decision tree (다변량 퍼지 의사결정트리의 적응 기법)

  • Moon-Jin Jeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.17-18
    • /
    • 2008
  • 다변량 퍼지 의사결정트리(이하 MFDT)는 학습 모델의 구조가 간소하고 분류율이 높다는 장점 때문에 일반 퍼지 의사결정트리를 대신해 손동작 인식 시스템의 분류기로 사용되었다. 다양한 사용자의 손동작 특성을 분류하기 위해 여러 개의 인식 모델을 만들고 새로운 사용자에게 가장 적합한 모델을 선택해 사용하는 모델 선택 기법도 손동작 인식에 적용되었다. 모델 선택 과정을 통해 선택된 모델은 기존 모델 중에서 새로운 사용자의 특성에 가장 가깝지만 해당 사용자에 최적화된 모델이라고는 할 수 없다. 이 논문에서는 MFDT 모델을 새로 입력된 데이터를 이용해 적응시키는 방법을 설명하고 실험 결과를 통해 적응 성능을 검증한다.

GOES-9 GVAR Imager Processing System Development by KARI

  • Ahn, S.I.;Koo, I.H.;Yang, H.M.;Hyun, D.H.;Park, D.J.;Kang, C.H.;Kim, D.S.;Choi, H.J.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.31-33
    • /
    • 2003
  • Recently, KARI developed in-house meteorological sensor processing system named MESIS for GOES GVAR 5-CH Imager for better KOMPSAT EOC mission operation. MESIS consists of antenna system, receiver, serial telemetry card, processing and mapping software, and 2 NT PC systems. This paper shows system requirement, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of operations covering from RF signal reception to web publishing.

  • PDF

First Bipropellant Propulsion System for Spacecraft in Korea

  • Han, Cho-Young;Chae, Jong-Won;Park, Eung-Sik;Baek, Myung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.307-310
    • /
    • 2008
  • In the framework of COMS(Communication, Ocean and Meteorological Satellite) programme, the first bipropellant propulsion system for GEO satellite has been developed successfully. So far Korea has its own experience of development of a monopropellant propulsion system for LEO satellites, i.e., KOMPSAT's. Other types of propulsion systems for a satellite, such as cold gas and electric propulsion etc., are being developed somewhere in Korea, however they are not commercialised yet, apart from those two systems aforementioned. This paper mainly focused on the design of the Chemical Propulsion System(CPS) for the COMS, joint scientific and communications satellite. It includes descriptions of the general system design and a summary of the supporting analysis performed to verify suitability for space flight. Essentially it provides an overview and guide to the various engineering rationale generated in support of the COMS CPS design activities. The manufacture and subsequent testing of COMS CPS are briefly discussed. Feasibility of COMS CPS to an interplanetary mission is proposed as well.

  • PDF

Development & Verification of On-Board Flight Software on Software-based Spacecraft Simulator (소프트웨어 기반의 위성 시뮬레이터를 이용한 위성 탑재소프트웨어 개발 및 검증 방안)

  • Choi, Jong-Wook;Shin, Hyun-Kyu;Lee, Jae-Seung;Cheon, Yee-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • For many years the development and verification of on-board flight software have been essentially performed on STB (Software Test Bed) environments which consist of real hardware in KARI. During development of on-board flight software on STB, we experienced many difficulties such as the late delivery of target hardware and limitation to access STB simultaneously by multiple developers. And it takes too much time and cost to build up multiple STBs. In order to successfully resolve this kind of problems, the software-based spacecraft simulator has been developed. The simulator emulates the on-board computer, I/O modules and power controller units and it supports the debugging and test facilities to software engineers for developing flight software. Also the flight software can be loaded without any modification and can be executed as pseudo real-time. This paper presents the architecture and design of software-based spacecraft simulator, and flight software development and verification under this environment.