• Title/Summary/Keyword: KOMPSAT I

Search Result 64, Processing Time 0.026 seconds

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

A STUDY FOR THE DETERMINATION OF KOMPSAT I CROSSING TIME OVER KOREA (I): EXAMINATION OF SOLAR AND ATMOSPHERIC VARIABLES (다목적 실용위성 1호의 한반도 통과시각 결정을 위한 연구 (I): 태양 및 대기 변수 조사)

  • 권태영;이성훈;오성남;이동한
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.330-346
    • /
    • 1997
  • Korea Multi-Purpose Satellite I (KOMPSAT-I, the first multi-purpose Korean satellite) will be launched in the third quarter of 1999, which is operated on the sun-synchronous orbit for cartography, ocean color monitoring, and space environment monitoring. The main mission of Electro-Optical Camera(EOC) which is one of KOMPSAT-I sensors is to provide images for the production of scale maps of Korea. EOC collects panchromatic imagery with the ground sample distance of 6.6m at nadir through visible spectral band of 510~730nm. For determining KOMPSAT-I crossing time over Korea, this study examines the diurnal variation of solar and atmospheric variables that can exert a great influence on the EOC imagery. The results are as follows: 1) After 10:30 a.m. at the winter solstice, solar zenith angle is less than $70^{\circ}$ and expected flux of EOC spectral band over land for clear sky is greater than about $2.4mW/cm^2$. 2) For daytime the distribution of cloud cover (clear sky) shows minimum (maximum) at about 11:00 a.m. Although the occurrence frequency of poor visibility by fog decreases from early morning toward noon, its effect on the distribution of clear sky is negligible. From the above examination it is concluded that determining KOMPSAT-I crossing time over Korea between 10:30 and 11:30 a.m. is adequate.

  • PDF

Comparison of SSM/I Sea Ice Concentration with Kompsat-1 EOC Images of the Arctic and Antarctic (북극과 남극의 SSM/I Sea Ice Concentration과 Kompsat-1 EOC 영상의 비교)

  • Han Hyang-Sun;Lee Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.153-156
    • /
    • 2006
  • 북극과 남극의 해빙을 촬영한 Kompsat-1 EOC 영상을 SSM/I Sea Ice Concentration(SIC)과 비교하였다. EOC 영상은 2005년 $7{\sim}8$월 북극 해빙지역의 가장자리를 지나는 10개 궤도(624 영상)와 $9{\sim}11$월 남극대륙의 가장자리를 지나는 11개 궤도(676 영상)에서 얻어졌다. 그 중 구름의 영향이 없는 약 12%의 영상으로부터 감독분류와 육안분류를 통해 Multi-year ice와 First-year ice(M+F), Young ice(Y), New ice(N)로 해빙의 유형을 구분하여 SIC를 계산하였으며, 이를 NASA Team Algorithm(NTA)으로 계산된 SSM/I SIC와 비교하였다. 북극의 여름철에는 해빙의 시공간적 변화가 매우 크기 때문에 EOC SIC(M+F+Y+N)와 SSM/I SIC의 상관계수는 0.671로 잘 일치하지 않았다. 남극의 봄철에 N을 제외한 EOC SIC(M+F+Y)의 경우 SSM/I SIC와 0.873의 높은 상관계수를 가졌다. 이로부터 NTA로 계산된 남극의 SSM/I SIC가 M과 F를 비롯하여 Y도 포함하는 것을 알 수 있었다.

  • PDF

Comparative Analysis of SSM/I and AMSR-E Sea Ice Concentration using Kompsat-l EOC Images of the Antarctic (Kompsat-l EOC 영상을 이용한 남극의 SSM/I 와 AMSR-E 해빙 면적비 비교 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.8-13
    • /
    • 2007
  • 2005년 남극의 해빙을 촬영한 Kompsat-1 EOC 영상을 이용하여 SSM/I와 AMSR-E 해빙 면적비를 비교, 분석하였다. EOC 영상은 남극의 봄철에 해당하는 9-11월 사이에 남극 대륙의 가장자리를 가로지르는 11 개 궤도로부터 총 676개 영상이 획득되었으며, 이 중 대기 및 광량 조건이 양호한 68개 의 영상을 선별하였다. EOC 영상에 감독분류 방볍 을 적 용하여 표면 유형 을 White ice(W), Grey ice(G), Dark-grey ice(D), Ocean(O)로 분류하였고 해빙 면적비를 산출하였으며, 이를 NASA Team Algorithm(NT)으로 계산된 SSM/I 해빙 면적비, NASA Team2 Algorithm(NT2)으로 계산된 AMSR-E 해빙 면적비와 비교하였다. 남극의 봄철에 SSM/I 해빙 면적비는 EOC W+G 면적비와 잘 일치하였고,AMSR-E 해빙 면적비는 EOC W+G+D 면적비와 좋은 상관성을 나타내었다. 따라서 이 시기의 남극 SSM/I NT 해빙 면적비는 W와 G만을 반영하며, AMSR-E NT2 해빙 면적비는 D도 포함하는 것을 알 수 있었다. 또한 AMSR-E가 SSM/I보다 높은 해빙 면적비를 나타내는 것을 확인하였으며,두 수동 마이크로파 해빙 면적비의 차이는 EOC D 면적비와 높은 상관성을 보였다. 이로부터 EOC 영상에서 분류된 D와 NT2에 서 고려되는 Ice type C가 서로 유사한 해빙 유형임을 추정할 수 있었다.

  • PDF

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(I): TOTAL IONIZING DOSE EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(I)- TOTAL IONIZING DOSE 영향 중심으로 -)

  • 백명진;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • In this paper, space radiation environment and total ionizing dose(TID) effect have been analyzed for the KOMPSAT-2 operational orbit. It has been revealed that the trapped protons are concentrated in the SAA(South Atlantic Anomaly) area and that the trapped protons and electrons, and solar protons are main factors affecting TID. It turned out that low energy Particles can be effectively blocked by aluminum shielding thickness, but high energy Particles can not be effectively blocked by increasing aluminum shielding thickness. KOMPSAT-2 total radiation dose which is accumulated continuously to spacecraft electronics has been expressed as the function of aluminum thickness. These values ran be used as the criteria for the selection of electronic parts and shielding thinkness of the KOMPSAT-2 structure or electronic box.

  • PDF

A Study on the Geomagnetic Reference Field Modeling from the Triaxial Magnetometer Data Onboard KOMPSAT-II (아리랑위성 2호의 삼축자력계로부터 관측된 지구자기장 모델 연구)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Kim, Jeong-Woo;Lee, Seon-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The main field component of the Earth's magnetic field was modeled from the tri-axial magnetometer onboard KOrean MultiPurpose SATellite-II (KOMPSAT-II) for the purpose of satellite attitude control. The model computed by the KOMPSAT-II magnetometer measurement data is compared with the International Geomagnetic Reference Field (IGRF) model of a degree of up to 13 in spherical harmonic coefficients. The previous study with KOMPSAT-I (Kim et al. 2004) indicated a good correlation of power spectrum of spherical harmonic coefficients with respect to the degree up to 5. This study, however, showed an agreement of the degree up to 8-9 of the coefficient power spectrum and a discrepancy between degrees 10 and 13. We have concluded that relevant data selection process, removal of the external field from the data in the high latitude region, an accuracy of the magnetometer all play an important role in finding a coherence with the IGRF model. This study will be extended to the secular variation model of geomagnetism if longer-period data become available.

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF