• 제목/요약/키워드: KOH activation

검색결과 216건 처리시간 0.02초

Activating needle coke to develop anode catalyst for direct methanol fuel cell

  • Park, Young Hun;Im, Ui-Su;Lee, Byung-Rok;Peck, Dong-Hyun;Kim, Sang-Kyung;Rhee, Young Woo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.47-52
    • /
    • 2016
  • Physical and electrochemical qualities were analyzed after KOH activation of a direct methanol fuel cell using needle coke as anode supporter. The results of research on support loaded with platinum-ruthenium suggest that an activated KOH needle coke container has the lowest onset potential and the highest degree of catalyst activity among all commercial catalysts. Through an analysis of the CO stripping voltammetry, we found that KOH activated catalysis showed a 21% higher electrochemical active surface area (ECSA), with a value of 31.37 m2 /g, than the ECSA of deactivated catalyst (25.82 m2 /g). The latter figure was 15% higher than the value of one specific commercial catalyst (TEC86E86).

Kinetics of the KOH Catalyzed-Methanolysis for Biodiesel Production from Fat of Tra Catfish

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • 한국응용과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.418-428
    • /
    • 2008
  • Transesterification of fat of Tra catfish with methanol in the presence of the KOH catalyst yields fatty acid methyl esters (FAME) and glycerol (GL). The effects of the reaction temperature and reaction time on rate constants and kinetic order were investigated. Three regions were observed. In the initial stage, the immiscibility of the Tra fat and methanol limited the reaction rate, hence this region was controlled by the mass transfer. Subsequent to this region, produced FAME like a co-solvent made the reaction mixture homogeneous, therefore the conversion rate increased rapidly so it was controlled by the kinetic parameters of the reaction until the equilibrium was approached in the final slow region. A second-order kinetic mechanism was proposed involving second regions for the forward reaction. The rate determining step for the overall KOH catalyzed-methanolysis of Tra fat was the conversion of triglycerides (TG) to diglycerides (DG). This rate constant was increased from 0.003 to $0.019min^{-1}$ when the reaction temperature was increased from 35 to $60^{\circ}C$. Its calculated activation energy was 14.379 ($kcal.mol^{-1}$).

이산화탄소 포집능 향상을 위한 활성탄소 섬유 흡착제 제조 (Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO2 Capture Capacity)

  • 황수현;박현수;김동우;조영민
    • 한국대기환경학회지
    • /
    • 제31권6호
    • /
    • pp.538-547
    • /
    • 2015
  • Test activated carbon fiber (ACF) was prepared from Polyacrylonirile (PAN) through oxidation and chemical activation. Immersion of ACF precursors in the aqueous KOH solution enhanced the surface structure, as examined by BET pore analysis. Specific surface area increased greatly from less than $70m^2/g$ to $1226m^2/g$ with 4 M KOH, and total pore volume also rose up to $0.483cm^3/g$. In particular, it was found that micropores favorable for $CO_2$ molecule capture occupied more than 95%. Maximum $CO_2$ adsorption capacity was 3.59 mmol/g at 298 K. Low depth of pores in the present ACF may facilitate the molecules' desorption for its regeneration.

천연 대나무로부터 합성된 활성 탄소의 미세구조 및 전기화학적 특성 (Micro-Structural and Electrochemical Properties of Activated Carbon Synthesized from Natural Bamboo)

  • 양동철;김수원;;박충년;박찬진
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.418-427
    • /
    • 2019
  • Activated carbon was synthesized from bamboo charcoal by KOH activation at various temperatures for electrochemical double layer capacitor applications. The micro-structural and surface properties of all the samples were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption/desorption isotherm method. The electrochemical properties of the activated bamboo charcoal were examined by cyclic voltammetry in the potential window of -1.0 to 0.2 V in 6 M KOH electrolyte at different scan rates. An electrode made from the sample activated with 7.5 M KOH and heat treated at $750^{\circ}C$ for 3 h gave a maximum capacitance of 553 F/g at 1 mV/s and 450 F/g at 10mV/s.

Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar

  • Lee, Hyung Won;Kim, Jae-Kon;Park, Young-Kwon
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.81-86
    • /
    • 2018
  • Empty fruit bunch (EFB) char was used to remove $NO_x$ and odorous substances. The physicochemical properties of the EFB chars were altered by steam or KOH treatments. The Brunauer-Emmett-Teller surface area and porosity were measured to determine the properties of the modified EFB chars. The $deNO_x$ and adsorption test for hydrogen sulphide and acetaldehyde were performed to determine the feasibility of the modified EFB chars. The KOH-treated EFB (KEFB) char revealed higher $deNO_x$ efficiency than with commercial activated carbon. The Cu-impregnated EFB char also had high $deNO_x$ efficiency at temperatures higher than $150^{\circ}C$. The KEFB char showed the highest hydrogen sulphide and acetaldehyde adsorption ability, followed by the steam-treated EFB char and untreated EFB char. Moreover, the product prepared by sulfonation of EFB char showed excellent performance for esterification of palm fatty acid distillate for biodiesel production.

Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors

  • Han, Joah;Lee, Jin Hyung;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권2호
    • /
    • pp.157-162
    • /
    • 2018
  • In the study, herbaceous biomass waste including giant miscanthus, corn stalk, and wheat stalk were used to prepare commercially valuable activated carbons by KOH activation. The waste biomass predominantly consists of cellulose/hemicellulose and lignin, in which decomposition after carbonization and activation contributed to commercially valuable specific surface areas (>$2000m^2/g$) and specific capacitances (>120 F/g) that exceeded those of commercial activated carbon. The significant electrochemical performance of the herbaceous biomass-derived activated carbons indicated the feasibility of utilizing waste biomass to fabricate energy storage materials. Furthermore, with respect to both economic and environmental perspectives, it is advantageous to obtain activated carbon from herbaceous biomass waste given the ease of handling biomass and the low production cost of activated carbon.

Mechanistic Studies of the Solvolyses of Cyclohexanesulfonyl Chloride

  • Kang, Suk Jin;Koh, Han Joong
    • 대한화학회지
    • /
    • 제63권4호
    • /
    • pp.233-236
    • /
    • 2019
  • In this study, the solvolysis of cyclohexanesulfonyl chloride (1) was studied by kinetics in ethanol-water, methanol-water, acetone-water, and 2,2,2-trifluoroethanol (TFE)-water binary solvent systems. The rate constants were applied to the extended Grunwald-Winstein equation, to obtain the values of m = 0.41 and l = 0.81. These values suggested $S_N2$ mechanism in which bond formation is more important than bond breaking in the transition state (TS). Relatively small activation enthalpy values (11.6 to $14.8kcal{\cdot}mol^{-1}$), the large negative activation entropy values (-29.7 to $-38.7cal{\cdot}mol^{-1}{\cdot}K^{-1}$) and the solvent kinetic isotope effects (SKIE, 2.29, 2.30), the solvolyses of the cyclohexanesulfonyl chloride (1) proceeds via the $S_N2$ mechanism.

A Preliminary Study on Alkali Activation of Waste Concrete Powder

  • 사수이;김규용;유하민;이예찬;편수정;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.303-304
    • /
    • 2023
  • In this study, the effects of NaOH and KOH alkali activators of various concentrations on the performance of alkali activated waste concrete powder (WCP) was discussed. The samples activated by alkaline solutions were cured for up to 28 days and then compressive strength test was performed. These samples were also characterized using various techniques to explore the phase evolution, and microstructural changes. Results showed superior performance of NaOH-activated WCP. Additionally, activation of WCP by 8M concentrated alkali solutions improved the strength, reactivity and microstructure of alkali activated WCP binder sample.

  • PDF

α-Ferric oxyhydroxide 입자의 핵성장 반응에 관한 연구 (Kinetics of Seed Growth of α-Ferric Oxyhydroxide)

  • 신동옥;설수덕
    • 공업화학
    • /
    • 제8권4호
    • /
    • pp.602-609
    • /
    • 1997
  • 공기를 산화제로 하여 황산제일철 용액에 침전제로서 KOH, NaOH, $Na_2CO_3$$K_2CO_3$를 사용하여 산화침전반응을 행하여 생성되는 $\alpha$-ferric oxyhydroxide입자의 생성 및 성장과정을 자유 pH 변화시험을 통해서 관찰하였다. $\alpha$-ferric oxyhydroxide입자의 생성 및 성장과정은 모든 침전제에서 동일한 형태를 나타내었으며 KOH, NaOH에 의해 생성된 $\alpha$-ferric oxyhydroxide 결정입자의 길이는 $Na_2CO_3$$K_2CO_3$에 의해 생성된 것보다 약 1.5배 정도 짧았다. KOH를 침전제로 황산제일철을 공기 산화한 결과 초기침전제의 몰비 $(R_o=[Fe^{2+}]_o/[OH^-]_o)$ 값이 작아질수록 결정 입자의 길이가 종축 방향으로 길게 성장하였으며 생성물은 $1{\mu}m$ 이하의 균일한 침상형의 $\alpha$-ferric oxyhydroxide였다. 또한 황산제일철에 KOH를 침전제로 공기를 산화제로 하여 고정 pH 실험법에 의하여, 공기 유속, 초기 침전제의 몰비 $(R_o=[Fe^{2+}]_o/[OH^-]_o)$ 및 반응 온도의 변화에 따른 $\alpha$-ferric oxyhydroxide의 핵성장 반응속도에 관하여 알아보았다. 공기 유속, 반응 온도 및 $R_o$값이 증가할수록 $\alpha$-ferric oxyhydroxide 입자의 핵성장 반응속도는 점차적으로 증가하였으며, 핵성장의 활성화 에너지는 16.16 KJ/mol 이며, 공기 유속, $R_o$값 및 반응온도의 영향에 대한 핵성장 반응속도 관계식은 다음과 같다. $-\frac{d[Fe^{2+}]}{dt}=1.46{\times}10^4[P_{o2}]^{0.66}[OH^-]^{2.19}exp(-\frac{16.16}{dt})$.

  • PDF