• 제목/요약/키워드: KOH activation

검색결과 216건 처리시간 0.019초

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Chemical Activation Characteristics of Pitch-Based Carbon Fibers by KOH

  • Jang, Jeen-Seok;Lee, Young-Seak;Kim, In-Ki;Yim, Going
    • Carbon letters
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • Naphtha cracking bottom oil was reformed with heat treatment and then spun at $310^{\circ}C$. These pitch-based carbon fibers were carbonized at $1000^{\circ}C$ after oxidation at $280^{\circ}C$, for 90 min. These fibers were chemically activated with molar ratio of KOH/CF (1 : 1) at different temperatures ($250{\sim}900^{\circ}C$) for 1 hr. The process of activation was characterized with DTA, TGA, BET surface area and pore size distribution. The activation of fibers by KOH was performed by several process. One is the reduction process that carbon fiber was reacted with $K_2O$ produced from dehydration process above $400^{\circ}C$. The other is the process that $K_2CO_3$ was directly reacted with carbon fiber. At $800^{\circ}C$, the activation was performed by catalyzed mechanism that $K_2O$ was obtained from the reaction of metal potassium with $CO_2$, then was changed to $K_2CO_3$. At $870^{\circ}C$, the activation was also observed that activation mechanism was promoted by metal catalyst with $CO_2$ from decomposition of $K_2CO_3$. The specific surface area of prepared activated carbon fibers was dependent on the activation mechanism. The specific surface area was in the range of $1519{\sim}2000\;cm^3/g$ and was the largest prepared at $870^{\circ}C$. The pores developed were mostly micropores which was very narrow and uniform. The total pore volume was $0.58{\sim}0.77\;cm^3/g$.

  • PDF

Influence of Activation Temperature on Micro- and Mesoporosity of Synthetic Activated Carbons

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • 제2권2호
    • /
    • pp.105-108
    • /
    • 2001
  • In this work, the activated carbons (ACs) with high micropores were synthesized from the polystyrene (PS) with KOH as activating agent. And the influence of activation temperature on porosity of the ACs studied was investigated. The porous structures of ACs were characterized by nitrogen adsorption at 77K using BET and D-R equations, and MP and BJH methods. The weight loss behaviors of the samples impregnated with KOH were also monitored using thermogravimetric analyzer (TGA). As a result, it was found that the samples could be successfully converted into ACs with well-developed micropores. From the results of pore size analysis, it was confirmed that elevated activation temperature does lead to the formation and deepening of microstructures without significant change in mesostructures. A thermogravimetric study showed that KOH could suppress the thermal decomposition of the sample, resulting in the increase of carbon yields.

  • PDF

활성탄 제조공정의 칼륨 재이용을 위한 세척공정 최적화 (Optimization of Washing Process for the Recycling of Potassium in the Manufacturing of Activated Carbon)

  • 이기쁨;정희숙;홍범의;김석휘;최석순
    • 유기물자원화
    • /
    • 제25권3호
    • /
    • pp.63-71
    • /
    • 2017
  • 본 연구에서는 활성탄 제조에 널리 이용되고 있는 KOH 활성화법으로 활성화된 활성탄의 표면적 증가를 위하여 세척시간, 교반속도, 세척횟수 등의 변수들에 대한 활성탄 세척공정 최적화 연구를 수행하였다. 연구결과, 활성탄의 표면적은 세척효율이 증가됨에 따라 뚜렷하게 증가되었는데, 90% 이상의 세척효율을 얻기 위해서는 활성탄의 복잡한 세공구조에 따른 세공 내 확산메커니즘이 제어인자로 작용함을 알 수 있었다. 또한, 세척액의 증발을 통하여 $K_2CO_3$를 얻을 수 있었고 이를 이용한 활성화실험이 이루어졌다. 그 결과, 비표면적 $2,219m^2/g$의 제조가 가능하였다. $K_2CO_3$가 KOH의 효과적인 대안이라는 것을 고려할 때, 활성탄 제조공정에서 폐수 재이용은 무배출 폐기물 공정에 적용 할 수 있음을 보여주었다.

혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 제조한 활성탄의 흡착 특성 조사 (Investigation of the Adsorption Properties of Activated Carbon Made by Chemical Activation of Mixed Waste Plastic Pyrolysis Residues)

  • 문은진;강윤석;박병선
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.391-399
    • /
    • 2023
  • 최근 증가하는 폐플라스틱의 재활용 방법으로 저온 열분해 기술이 연구되고 있다. 폐플라스틱 저온 열분해 기술은 에너지 자원으로 활용할 수 있는 열분해유를 생산하지만, 고체의 잔류물이 발생한다. 폐플라스틱 열분해 잔류물은 활용 범위가 낮아 대부분 매립 처리하고 있다. 본 연구에서는 혼합 폐플라스틱 열분해 잔류물를 활성탄으로 재활용하기 위한 연구를 수행하였다. 혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 활성탄을 제조하고, 그 특성에 대해 조사하였다. 공업분석을 통해 잔류물의 고정탄소량이 33.69 %인 것으로 확인하였다. 활성탄 제조에는 화학적 활성화를 활용하였으며. 활성화제로 KOH를 사용하였다. KOH와 잔류물의 혼합비율의 영향을 조사하기 위해 0.5, 1.0, 2.0의 비율로 시료를 혼합하였다. 혼합한 시료는 활성화 온도는 800 ℃에서 1시간 동안 화학적 활성화를 진행하였다. BET를 통한 활성탄 특성 분석 결과 KOH의 혼합비율이 증가할수록 비표면적이 증가하는 것을 확인하였다.

Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구 (A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery)

  • 이호;장국진;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF

PAN계 안정화섬유로부터 고기능성 활성탄소섬유의 제조 및 특성 (Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN fibers)

  • 임연수;유기상;문숙영;정윤중;김명수;함현식
    • 한국세라믹학회지
    • /
    • 제40권5호
    • /
    • pp.468-474
    • /
    • 2003
  • 안정화 PAN(Polyacronitrile)계 섬유를 이용하여 물리적인 방법과 화학적인 방법으로 활성탄소섬유(Activated Carbon Fibers)를 제조하고, 그 특성을 비교평가 하였다. 본 연구에서는 안정화 PAN계 섬유를 수증기 및 $CO_2$를 이용한 물리적 활성화와 KOH를 이용한 화학적 활성화에 의해 여러 등급의 활성탄소섬유를 제조하였고, 비표면적, 요오드흡착량, 미세구조, 세공구조 등을 측정하였다. 물리적 활성화 방법에는 수증기와 $CO_2$가 사용되었는데, 수증기활성화의 경우 99$0^{\circ}C$의 활성화 온도에서 1635 m$^2$/g의 비표면적을 나타내었고, $CO_2$ 활성화의 경우에는 99$0^{\circ}C$의 활성화 온도에서 671 m$^2$/g의 비표면적을 나타내었다. KOH를 이용한 화학적 활성화 방법에서는 KOH와 안정화 PAN계 탄소섬유의 비가 1.5 : 1인 경우 90$0^{\circ}C$의 활성화 온도에서 3179 m$^2$/g의 비표면적을 나타내었다. 물리적 활성화와 화학적 활성화로 제조된 활성탄소섬유의 질소흡착등온선의 결과로 보면 type I의 형태와 type I에서 type II로의 전이형태의 등온흡착곡선을 나타내었다.

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.

KOH 활성화처리된 메조기공 탄소를 이용한 실내 포름알데히드 제거 (Removal of Indoor Formaldehyde Using Mesoporous Carbon Activated with KOH)

  • 유미진;박성훈;전종기;박영권
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.42-46
    • /
    • 2012
  • 본 연구에서는 메조기공 탄소(CMK-3)를 KOH로 활성화 하여 실내공기 오염물질인 포름알데히드 흡착에 사용하였다. 활성화는 KOH 처리한 CMK-3를 $700^{\circ}C$의 반응기에서 질소분위기로 수행하였다. 활성화된 시료의 특성은 BET, XRD, XPS, FT-IR을 통해 분석하였다. 포름알데히드의 흡착능은 활성화에 의해 향상되었으며, 이는 활성화에 의해 메조기공 탄소의 산소작용기와 질소 작용기의 생성에 기인하는 것으로 판단된다.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.