• 제목/요약/키워드: KO Mice

검색결과 365건 처리시간 0.024초

Analysis of high-fat diet-induced inflammatory responses in Rhbdf2 knockout mice

  • Kim, Sung-Jun;Nam, Ki-Hoan;Park, Seul-Gi;Byun, Young-Sub;Kim, Eun-Kyoung;Cho, Sang-Mi;Kim, Ha-rim;Kim, Hyoung-Chin;Lee, Hu-Jang;Lee, Beom Jun
    • Journal of Preventive Veterinary Medicine
    • /
    • 제42권4호
    • /
    • pp.133-142
    • /
    • 2018
  • This study investigated the characteristics of obesity induced by a high-fat diet (HD) over 13 weeks in Rhbdf2 gene knockout (KO) mice. Forty 7-week-old Rhbdf2 wild and KO mice were used and the mice were divided into 4 groups: Wild-ND (n=10, Rhbdf2 wild mice, normal diet (ND)), Wild-HD (n=10, Rhbdf2 wild mice, HD), KO-ND (n=10, Rhbdf2 KO mice, ND) and KO-HD (n=10, Rhbdf2 KO mice, HD). The relative epididymal fat weight in KO-HD was significantly increased compared with that in KO-ND (P<0.01). The relative liver and spleen weights in KO-HD were decreased compared with those in Wild-HD (p < 0.05) and KO-ND (p < 0.01). The mRNA expression of SOD1 in KO-ND was significantly reduced compared with that in Wild-ND (p < 0.05). In Wild-ND and HD, the mRNA expressions of $TNF-{\alpha}$ and IL-6 in epididymal fat were significantly increased compared with those in KO-ND and HD (p < 0.01). A significant increase of $TNF-{\alpha}$ and IL-6 mRNA expression was observed in KO-HD compared with KO-ND (p < 0.01). These results indicated that Rhbdf2 genes may regulate high fat diet-induced obesity damage by anti-inflammatory and anti-oxidative roles in fat tissue of mice.

Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine

  • Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James;Lee, Hyun Jun;Sayson, Leandro Val;Ortiz, Darlene Mae D.;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.135-143
    • /
    • 2021
  • Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction. Per2 disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.

The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner

  • Ryu, Seung-Hyun;Park, Jong-Hyung;Choi, Soo-Young;Jeon, Hee-Yeon;Park, Jin-Il;Kim, Jun-Young;Ham, Seung-Hoon;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1333-1340
    • /
    • 2016
  • The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

C1qa deficiency in mice increases susceptibility to mouse hepatitis virus A59 infection

  • Kim, Han-Woong;Seo, Sun-Min;Kim, Jun-Young;Lee, Jae Hoon;Lee, Han-Woong;Choi, Yang-Kyu
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.36.1-36.12
    • /
    • 2021
  • Background: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. Objectives: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. Methods: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. Results: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. Conclusions: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.

IL-4-deficient Mice Aggravate Hypersensitivity Pneumonitis

  • Hwang, Su-Jin;Chung, Doo-Hyun
    • IMMUNE NETWORK
    • /
    • 제8권3호
    • /
    • pp.90-97
    • /
    • 2008
  • Background: Hypersensitivity pneumonitis (HP) comprises a group of lung diseases resulting from repeated inhalation of various antigens such as Saccharopolyspora rectivirgula (SR). HP is categorized as a Th1 disease. Therefore, it has been suggested that IL-4, Th2 type cytokine, plays a protective role in the development of HP. However, the functional role of IL-4 in HP has not been extensively investigated in vivo. Therefore, we investigated the functional role of IL-4 in HP using IL-4 knockout (KO) mice. Methods: HP was induced by repeated exposure to SR in C57BL/6 (B6) and IL-4 KO (C57BL/6 background) mice. Results: IL-4 KO mice aggravated HP in terms of histological alteration, SR-specific immune responses, and inflammatory cell infiltration in the lungs compared with B6 mice. IL-4 KO mice produced high levels of IFN-${\gamma}$, TGF-${\beta}$ and TNF-${\alpha}$ in the lungs, whereas B6 mice showed the enhanced production of IL-4. Moreover, chemokines such as MIP-1${\alpha}$, MCP-1, and RANTES were highly expressed in IL-4 KO mice. IFN-${\gamma}$-secreting CD4, CD8 T cells, and neutrophils were enhanced in the bronchoalveolar lavage fluid (BALF) of IL-4 KO mice than those of B6 mice. The administration of recombinant(r) IL-4 restored these immunologic parameters in IL-4 KO mice. Conclusion: These results indicate that IL-4 plays a suppressive role in SR-induced HP by attenuating Th1-dominant immune responses.

Determination of the Granulosa Cell-Specific Endothelin Receptor A Deletion on Ovarian Function

  • Cho, Jong-Ki
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.195-200
    • /
    • 2014
  • Endothelin 2 (EDN2) induces follicular rupture by constricting periovulatory follicles. In this study, it was investigated the mechanisms of EDN2 action on follicular rupture with respect of receptor using the conditionally granulosa cell specific EDN2 receptor type A (ETa) KO mice (gcETaKO; $ETa^{flox/-}{\cdot}Amhr2^{Cre}$). It was generated the gcETaKO mice by breeding with $ETa^{flox/-}$ mice after mono-alleic ETa knockout by $ZP3^{Cre}$ and $Amhr2^{Cre}$ mice. Fertility, ovulation and maturation rates of ovulated oocytes after super ovulation were investigated in the gcETaKO mice compared with wild-type mice ($ETa^{flox/flox}$ and $ETa^{flox/-}$) as a control group. In the gcETaKO mice, normal fertility after breeding with male mice was shown compared with wild-type mice. And, there was no significant differences in ovulation rates after super ovulation, however its maturation rates was lower than that of wild type mice. These findings show that EDN2 in follicular rupture for ovulation is related with an other ETa not in granulosa cells. Further studies are needed to investigate how EDN2 is acted in ovarian follicular rupture for ovulation.

Deficiency of iNOS Does Not Prevent Isoproterenol-induced Cardiac Hypertrophy in Mice

  • Cha, Hye-Na;Hong, Geu-Ru;Kim, Yong-Woon;Kim, Jong-Yeon;Dan, Jin-Myoung;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.153-159
    • /
    • 2009
  • We investigated whether deficiency of inducible nitric oxide synthase (iNOS) could prevent isoproterenol-induced cardiac hypertrophy in iNOS knockout (KO) mice. Isoproterenol was continuously infused subcutaneously (15 mg/kg/day) using an osmotic minipump. Isoproterenol reduced body weight and fat mass in both iNOS KO and wild-type mice compared with saline-infused wild-type mice. Isoproterenol increased the heart weight in both iNOS KO and wild-type mice but there was no difference between iNOS KO and wild-type mice. Posterior wall thickness of left ventricle showed the same tendency with heart weight. Protein level of iNOS in the left ventricle was increased in isoproterenol-infused wild-type mice. The gene expression of interleukin-6 (IL-6) and transforming growth factor-${\beta}$ (TGF-${\beta}$) in isoproterenol-infused wild-type was measured at 2, 4, 24, and 48-hour and isoproterenol increased both IL-6 (2, 4, 24, and 48-hour) and TGF-${\beta}$ (4 and 24-hour). Isoproterenol infusion for 7 days increased the mRNA level of IL-6 and TGF-${\beta}$ in iNOS KO mice, whereas the gene expression in wild-type mice was not increased. Phosphorylated form of extracellular signal-regulated kinases (pERK) was also increased by isoproterenol at 2 and 4-hour but was not increased at 7 days after infusion in wild-type mice. However, the increased pERK level in iNOS KO mice was maintained even at 7 days after isoproterenol infusion. These results suggest that deficiency of iNOS does not prevent isoproterenol-induced cardiac hypertrophy and may have potentially harmful effects on cardiac hypertrophy.

Apoptosis-associated speck-like protein containing a CARD is not essential for lipopolysaccharide-induced miscarriage in a mouse model

  • Eun Young Oh;Malavige Romesha Chandanee;Young-Joo Yi;Sang-Myeong Lee
    • 농업과학연구
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2022
  • A disrupted immune system during pregnancy is involved in pregnancy complications, such as spontaneous abortion, preeclampsia, and recurrent pregnancy loss. This study examined the role of toll-like receptor (TLR) 4 and ASC (apoptosis-associated speck-like protein containing a CARD [c-terminal caspase recruitment domain]) in pregnancy complications using a lipopolysaccharide (LPS)-induced miscarriage mice model. Incidences of miscarriage and embryonic resorption were examined at 9.5 days of pregnancy in wild-type (WT), ASC knockout (KO), and TLR4 KO mice after injecting them with LPS. The fetuses and placenta were obtained after sacrifice at 15.5 days of pregnancy. A significantly lower frequency of fetus absorption was found in TLR4 KO mice, whereas corresponding absorption outcomes were strongly induced in the WT and ASC KO mice upon an LPS injection. As expected, TLR4 KO mice were resistant to LPS-induced abortion. A histological analysis of the miscarried placenta showed increasing levels of the eosin staining of spongiotrophoblast cells without any obvious difference between WT and ASC KO mice. These results suggest that TLR4 KO mice are resistant to LPS, which affects pregnancy persistence, whereas WT and ASC KO mice show high miscarriage rates due to LPS. Moreover, the ASC adaptor is not directly involved in LPS-induced miscarriages, and the NLRP3 inflammasome can be activated by other proteins in the absence of ASC.

TRPV1 Is Associated with Testicular Apoptosis in Mice

  • Siregar, Adrian S.;Nyiramana, Marie Merci;Kim, Eun-Jin;Shin, Eui-Jung;Kim, Chang-Woon;Lee, Dong Kun;Hong, Seong-Geun;Han, Jaehee;Kang, Dawon
    • 한국동물생명공학회지
    • /
    • 제34권4호
    • /
    • pp.311-317
    • /
    • 2019
  • Reproductive potential decreases with age. A decrease in male fertility is due to a combination of morphological and molecular alterations in the testes. Transient receptor potential vanilloid receptor-1 (TRPV1) is associated with aging and lifespan, and its activation causes apoptotic cell death in various cell types. However, the effect of TRPV1 on testicular apoptosis in aged mice has not yet been reported. TRPV1 knockout (KO) mice had a longer lifespan than that of wild-type (WT) mice. Lifespan was increased by 11.8% in male TRPV1 KO mice compared to that in WT mice. TRPV1 KO males lived approximately 100 days longer than WT males on average, and the maximum lifespan was markedly extended in TRPV1 KO mice compared with that in WT mice. The TRPV1 expression levels were highly increased in the testes of older mice. TRPV1 was expressed in the entire testes region of the old mice. In addition, old TRPV1 KO mice had lower testicular apoptosis than that of WT mice. Our results show that TRPV1 induces testicular apoptosis and suggest that TRPV1 may be associated with testicular aging.

Efficient Production of loxP Knock-in Mouse using CRISPR/Cas9 System

  • Jung, Sundo
    • 대한의생명과학회지
    • /
    • 제26권2호
    • /
    • pp.114-119
    • /
    • 2020
  • Of the various types of mice used for genome editing, conditional knock-out (cKO) mice serve as an important model for studying the function of genes. cKO mice can be produced using loxP knock-in (KI) mice in which loxP sequences (34 bp) are inserted on both sides of a specific region in the target gene. These mice can be used as KO mice that do not express a gene at a desired time or under a desired condition by cross-breeding with various Cre Tg mice. Genome editing has been recently made easy by the use of third-generation gene scissors, the CRISPR-Cas9 system. However, very few laboratories can produce mice for genome editing. Here we present a more efficient method for producing loxP KI mice. This method involves the use of an HDR vector as the target vector and ssODN as the donor DNA in order to induce homologous recombination for producing loxP KI mice. On injecting 20 ng/µL of ssODN, it was observed that the target exon was deleted or loxP was inserted on only one side. However, on injecting 10 ng/µL of the target HDR vector, the insertion of loxP was observed on both sides of the target region. In the first PCR, seven mice were identified to be loxP KI mice. The accuracy of their gene sequences was confirmed through Sanger sequencing. It is expected that the loxP KI mice produced in this study will serve as an important tool for identifying the function of the target gene.