• Title/Summary/Keyword: KNEE JOINT

Search Result 1,664, Processing Time 0.031 seconds

Arthrokinetic Analysis of Knee Joint (슬관절의 운동학적 분석)

  • Kim, Jae-hun
    • PNF and Movement
    • /
    • v.6 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Purpose : To describes the important aspects of knee joint movement and function used when applying PNF technique to the lower limb. Method : The knee was a very important roles in the lower limb movement and ambulation. This study summarizes the physiologic movement of knee to the PNF lower extremity patterns. Result : The tibiofemoral joint is usually described as a modified hinge joint with flexion-extension and axial rotation by two degrees of freedom movement. These arthrokinematics are a result of the geometry of the joints and the tension produced in the ligamentous structures. The patellofemoral joint is a sellar joint between the patella and the femur. Stability of the patellofemoral joint is dependent on the passive and dynamic restraints around the knee. In a normal knee the ligaments are inelastic and maintain a constant length as the knee flexes and extends, helping to control rolling, gliding and translation of the joint motions. Conclusions : It is important to remember that small alterations in joint alignment can result in significant alterations in patellofemoral joint stresses and that changes in the mechanics of the patellofemoral joint can also result in changes in the tibiofemoral compartments. Successful treatment requires the physical therapist to understand and apply these arthrokinematic concepts. When applied to PNF low extremity patterns, understanding of these mechanical concepts can maximize patient function while minimizing the risk for further symptoms or injury.

  • PDF

The Effect of Wearing a Soft Knee Brace and Balance Training on Paretic Side Foot Pressure and Knee Joint Muscle Strength in Stroke Patients

  • Choi, Eun-Nyeo;Cho, Kyun-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.917-925
    • /
    • 2022
  • The purpose of this study was to investigate the effect of wearing a soft knee brace during balance training on paretic side foot pressure and knee joint muscle strength in stroke patients. The recruited 20 stroke patients were randomized into 10 experimental group and 10 control group. All subjects were subjected to balance training, and only the experimental group was trained in balance while wearing a soft knee brace. Experimental group and the control group before and after the intervention showed significant increases in foot pressure and knee joint muscle strength on the paralyzed side (p<0.05), experimental group showed a significant increase in foot pressure and knee joint muscle strength compared to the control group (p<0.05). This study confirmed that wearing a soft knee brace had a positive effect on paretic side foot pressure and knee joint muscle strength in stroke patients.

Development of the Automatic Knee Joint Control System for a Knee-Ankle-Foot Orthosis Using an Electromechanical Clutch (전자-기계식 클러치를 이용한 장하지 보조기용 무릎관절 자동 제어 장치의 개발)

  • 이기원;강성재;김영호;조강희
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.359-368
    • /
    • 2001
  • A new knee-ankle-foot-orthosis(KAFO) which uses an automatically-controlled electromechanical wrap spring clutch for the knee joint was developed in the present study. It was found that the output voltage from the foot switches of the developed KAFO was proportionally increased with respect to the applied load. The output voltage from the infrared sensor also decreased as the knee flexion angle increased. The knee joint system for the new KAFO weighs only 780g lighter than any other commercially available developed system. In addition, the solenoid reduces the reaction time for the automatic control of the knee joint. The static torque of the clutch was measured for three persons, and it satisfied the normal knee extension moment during the pre-swing. Three-dimensional gait analyses for three different gait patterns (normal gait, locked-knee gait, controlled-knee gait) from five normal subjects were conducted. Controlled-knee gait showed the maximum knee flexion angle of 40.56$\pm9.55^{\circ}$ and the maximum knee flexion moment of 0.20$\pm$0.07Nm/kg at similar periods in the normal gait. Our KAFO system satisfies both stability during stance phase and free knee flexion during the swing phase at the proper period during the gait cycle. Therefore, our KAFO system would be very useful in various low extremity orthotic applications.

  • PDF

Studies on the Knee Joint Pain (무릎관절의 통증에 관한 연구)

  • Choe, Joon-Rieb;Lee, Hee-Jeon;Choe, Wook-Yoen;Han, Sang-Yoen
    • The Korean Journal of Pain
    • /
    • v.5 no.2
    • /
    • pp.249-257
    • /
    • 1992
  • It is general knowledge that knee joint pain can be attributed to trauma and degenerative change around the knee joint. However most patients who have suffered from pain or limited range of motion of the knee joint show no definite pathology on X-ray or laboratory examination. We examined 242 patients with knee joint pain and found compression or entrapment of the articular nerve fiber by the tissue around the knee joint resulted in pain in almost all cases. Conclusion: by relieving the compression of the articular nerve fiber with just physical therapy and LASER stimulation on the identified trigger points, in conjunction with NSAIDs, muscle relaxants, were found to be very effective in the treatment of knee joint pain.

  • PDF

Characteristics of the Compensation for Gait of the Induced Knee Stiffness in Normal Subjects (정상인 보행에서 무릎관절의 유도된 강직에 따른 신체 보상 특성)

  • Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.357-367
    • /
    • 2013
  • The purposes of this study were investigated physical compensation for gait on induced knee stiffness in normal subjects. Ten subjects were participated in the experiment(age: $26.0{\pm}6.3$ yrs, height: $175.5{\pm}5.3$ cm, weight: $69.1{\pm}6.1$ kg). The study method adopted 3D analysis with five cameras and ground reaction force with two force-plate. Induced knee stiffness level were classified as gait pattern on ROM of knee(free level, $30^{\circ}$ restriction level, fix level). The results were as follows; In angular displacement of hip joint, left hip joint was the more extended in mid-stance on induced right knee stiffness. In angular displacement of knee joint, there was no physical compensation on induced right knee stiffness, but free knee level gait was more flexed in swing phase of right knee joint. In angular displacement of ankle joint, right ankle joint was the more dorsiflexed on induced right knee stiffness, and $30^{\circ}$ restriction level and fix level gait were less plantarflexed in TO2. In trunk tilt, free and $30^{\circ}$ restriction level gait was more backward tilt on induced right knee stiffness. In ROM of each joint, right knee joint was more larger and trunk tilt was more lower on induced right knee stiffness. In GRF, Fx was more bigger lateral force in free and $30^{\circ}$ restriction level gait, and was more bigger medial force in fix level gait. Fy was more bigger propulsion force in free level gait, and was was more bigger braking force in $30^{\circ}$ restriction level gait. Left braking force in $30^{\circ}$ restriction level gait was more bigger. Fz was no significant.

Comparison of the Immediate Effect of the Whole-body Vibration on Proprioceptive Precision of the Knee Joint Between Barefoot and Shoe-wearing Conditions in Healthy Participants

  • Lee, Yu-bin;Hwang, Ui-jae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.108-116
    • /
    • 2021
  • Background: Whole-body vibration (WBV) has been used to alleviate proprioceptive damage by musculoskeletal and neurological conditions. However, no study has determined whether wearing shoes while applying WBV can affect proprioception precision of the knee joint. Objects: This study aimed to determine the differences in the proprioceptive precision of the knee joint before and after WBV and to compare the proprioceptive precision of the knee joint between barefoot and shoe-wearing conditions. Methods: This study recruited 33 healthy participants. A passive-to-active angle reproduction test was used to measure the proprioception precision of the knee joint using an electrogoniometer, and the target angle was set to a knee flexion of 30°. Proprioception precision was calculated using the error angle (angular difference from 30°). Proprioceptive precision was measured in weight-bearing and non-weight-bearing positions before and after applying WBV for 20 minutes at 12 Hz in barefoot and shoe-wearing conditions. Mixed repeated analysis of variance was used to determine the differences in changes in the proprioceptive precision of the knee joint according to foot conditions. Results: There were significant improvements in the weight-bearing (p = 0.002) and non-weight-bearing (p < 0.001) proprioceptive precision of the knee joint after applying WBV. However, there was no significant difference in the change in proprioceptive precision of the knee joint after applying WBV between the barefoot and shoe-wearing conditions. Conclusion: WBV stimulation had an immediate effect on improving the proprioceptive precision of the knee joint. However, foot conditions (barefoot or shoe-wearing) during WBV application did not influence the proprioceptive precision of the knee joint.

Effects of the General Coordinative Manipulation Joint Intervention Model in Correcting Distort Leg with Imbalance of the Lower Extremity Joint, Pelvic and Shoulder Girdles, and Lumbar Spine (다리관절, 다리-팔 이음뼈, 허리뼈의 불균형을 가진 휜다리에 대한 전신조정술 관절중재모형의 교정효과)

  • Moon, Sangeun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • Purpose : The purpose of this study is to analyze the corrective effect of the general coordinative manipulation (GCM) joint intervention model on distort leg with imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine. Methods : The study used a comparative analysis of the size of the distort leg and the imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine before and after the application of the GCM joint intervention model. A total of 31 subjects from movement center G and the department of physical therapy at university M were selected as research subjects, and they were divided into two groups. The GCM joint intervention model was applied to 18 subjects in the bow knee group and 13 subjects in the knock knee group. The two groups received daily intervention three times a week for four weeks. The corrective effect of the GCM joint intervention model for each type of distort leg was compared and analyzed. Results : The effects of the GCM joint intervention model in correcting bow knee and knock knee with knee deformation and imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine were significant in most domains (p<.05). The correlation between the bow knee and knock knee groups showed significance in most domains (p<.05). Conclusion : The GCM joint intervention model showed significant corrective effect in the bow knee and knock knee groups in terms of knee deformation, lower extremity joints, pelvic and shoulder girdles, and lumbar spine (p<.05).

Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion (보행 중 인체 슬관절의 3차원 접촉 모델 개발)

  • Kim, Hyo-Shin;Park, Seong-Jin;Mun, Joung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults (태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석)

  • Jo, Gye-Hun;Oh, Jeong-Hoon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

Effects of a Taping Method on Pain and ROM of the Knee Joint in the Elderly (테이핑 요법이 노인의 무릎 통증과 관절가동범위에 미치는 영향)

  • Park Yeong-Sook;Kim Hyun-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.2
    • /
    • pp.372-381
    • /
    • 2005
  • Purpose: This study was to investigate the effects of a taping method on pain and ROM of the knee joint in the elderly. Method: The subjects were seniors registered in a senior welfare center in D city. An experimental group of 30 persons and acontrol group of 33 persons were chosen and according to the proper conditions and a knee pain score was marked from 1-5 on a Numerical Pain Rating Scale. For the experimental group, the taping method was conducted three times a week for four weeks (twelve times in all) but the control group did not receive taping.. The measuring instrument of knee pain was a numerical pain rating scale from 0 to 10 and the ROM score was the average value of three measured values with a goniometer. The data was analyzed with SPSS WIN 10.0 using an $x^2-test$, t-test, repeated measures ANOVA, and time contrast. Result: Knee joint pain was significantly decreased in the experimental group over that of the control group (p=.001). In addition, knee joint ROM of the experimental group was significantly improved over that of the control group (p=.001). Conclusion: It was proven that the taping method was effective for pain relief and increasing ROM of the knee joint in the elderly.