• Title/Summary/Keyword: KMS symmetric quantum Markovian semigroups

Search Result 3, Processing Time 0.018 seconds

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

A REMARK ON ERGODICITY OF QUANTUM MARKOVIAN SEMIGROUPS

  • Ko, Chul-Ki
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.99-109
    • /
    • 2009
  • The aim of this paper is to find the set of the fixed elements and the set of elements for which equality holds in Schwarz inequality for the KMS-symmetric Markovian semigroup $\{S_t\}_{t{\geq}0}$ given in [10]. As an application, we study some properties such as the ergodicity and the asymptotic behavior of the semigroup.

A REMARK ON INVARIANCE OF QUANTUM MARKOV SEMIGROUPS

  • Choi, Ve-Ni;Ko, Chul-Ki
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.81-93
    • /
    • 2008
  • In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of Cipriani [6] and the symmetric embedding map, authors constructed the KMS-symmetric Markovian semigroup $\{S_t\}_{t{\geq}0}$ on a von Neumann algebra $\cal{M}$ with an admissible function f and an operator $x\;{\in}\;{\cal{M}}$. We give a sufficient and necessary condition for x so that the semigroup $\{S_t\}_{t{\geq}0}$ acts separately on diagonal and off-diagonal operators with respect to a basis and study some results.