• Title/Summary/Keyword: KMA earth system model

Search Result 26, Processing Time 0.022 seconds

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System (기상청 국지기상예측시스템을 이용한 서울의 도시열섬강도 예측 평가)

  • Byon, Jae-Young;Hong, Seon-Ok;Park, Young-San;Kim, Yeon-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • The purpose of this study was to evaluate the urban heat island (UHI) intensity and the corresponding surface temperature forecast obtained using the local data assimilation and prediction system (LDAPS) of the Korea Meteorological Administration (KMA) against the AWS observation. The observed UHI intensity in Seoul increases during spring and winter, while it decreases during summer. It is found that the diurnal variability of the UHI intensity peaks at dawn but reaches a minimum in the afternoon. The LDAPS overestimates the UHI intensity in summer but underestimates it in winter. In particular, the model tends to overestimate the UHI intensity during the daytime in summer but underestimate it during the nighttime in winter. Moreover, surface temperature errors decrease in summer but increase in winter. The underestimation of the winter UHI intensity appears to be associated with weak forecasting of urban temperature in winter. However, the overestimated summer UHI intensity results from the underestimation of the suburban temperature forecast in summer. In order to improve the predictability of the UHI intensity, an urban canopy model (MORUSES) that considers urban effects was combined with LDAPS and used for simulation for the summer of 2017. The surface temperature forecast for the city was improved significantly by adopting MORUSES, and there were remarkable improvements in urban surface temperature morning forecasts. The urban canopy model produced an improvement effect that weakened the intensity of the UHI, which showed an overestimation during summer.

Intercomparison of Shortwave Radiative Transfer Models for a Rayleigh Atmosphere (레일리 대기에서 단파 영역에서의 복사전달모델 결과들의 상호 비교)

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Lee, Kyu-Tae;Kim, Jhoon;Ho, Chang-Hoi;Ahn, Myoung-Hwan;Hur, Young-Min;Rhee, Ju-Eun;Yoo, Hye-Lim;Chung, Chu-Yong;Shin, In-Chul;Choi, Yong-Sang;Kim, Young Mi
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.298-310
    • /
    • 2007
  • Intercomparison between eight radiative transfer codes used for the studies of COMS (Communications, Ocean, and Meteorological Satellite) in Korea was performed under pure molecular, i.e., Rayleigh atmospheres in four shortwave fluxes: 1) direct solar irradiance at the surface, 2) diffuse irradiance at the surface, 3) diffuse upward flux at the surface, and 4) diffuse upward flux at the top of the atmosphere. The result (hereafter called the H15) from Halthore et al.'s study (2005) which intercompared and averaged 15 codes was used as a benchmark to examine the COMS models. Uncertainty of the seven COMS models except STREAMER was ${\pm}4%$ with respect to the H15, comparable with ${\pm}3%$ of Halthore et al.'s (2005). The uncertainty increased under a large $SZA=75^{\circ}$. The SBDART model generally agreed with the H15 better than the 6S model, but both models in the shortwave infrared region were equally good. The direct solar irradiance fluxes at the surface, computed by the SBDARTs of four different users, were different showing a relative error of 1.4% $(12.1Wm^{-2})$. This reason was partially due to differently installing the wavelength resolution in the flux integration. This study may be useful for selecting the optimum model in the shortwave region.

Prediction of Daily Maximum SO2 Concentrations Using Artificial Neural Networks in the Urban-industrial Area of Ulsan (인공신경망 모형을 이용한 울산공단지역 일 최고 SO2 농도 예측)

  • Lee, So-Young;Kim, Yoo-Keun;Oh, In-Bo;Kim, Jung-Kyu
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.129-139
    • /
    • 2009
  • Development of an artificial neural network model was presented to predict the daily maximum $SO_2$ concentration in the urban-industrial area of Ulsan. The network model was trained during April through September for 2000-2005 using $SO_2$ potential parameters estimated from meteorological and air quality data which are closely related to daily maximum $SO_2$ concentrations. Meteorological data were obtained from regional modeling results, upper air soundings and surface field measurements and were then used to create the $SO_2$ potential parameters such as synoptic conditions, mixing heights, atmospheric stabilities, and surface conditions. In particular, two-stage clustering techniques were used to identify potential index representing major synoptic conditions associated with high $SO_2$ concentration. Two neural network models were developed and tested in different conditions for prediction: the first model was set up to predict daily maximum $SO_2$ at 5 PM on the previous day, and the second was 10 AM for a given forecast day using an additional potential factors related with urban emissions in the early morning. The results showed that the developed models can predict the daily maximum $SO_2$ concentrations with good simulation accuracy of 87% and 96% for the first and second model. respectively, but the limitation of predictive capability was found at a higher or lower concentrations. The increased accuracy for the second model demonstrates that improvements can be made by utilizing more recent air quality data for initialization of the model.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Distribution of Photovoltaic Energy Including Topography Effect (지형 효과를 고려한 지표면 태양광 분포)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • A photovoltaic energy map that included a topography effect on the Korean peninsula was developed using the Gangneung-Wonju National University (GWNU) solar radiation model. The satellites data (MODIS, OMI and MTSAT-1R) and output data from the Regional Data Assimilation Prediction System (RDAPS) model by the Korea Meteorological Administration (KMA) were used as input data for the GWNU model. Photovoltaic energy distributions were calculated by applying high resolution Digital Elevation Model (DEM) to the topography effect. The distributions of monthly accumulated solar energy indicated that differences caused by the topography effect are more important in winter than in summer because of the dependency on the solar altitude angle. The topography effect on photovoltaic energy is two times larger with 1 km resolution than with 4 km resolution. Therefore, an accurate calculation of the solar energy on the surface requires high-resolution topological data as well as high quality input data.

Improvements for Atmospheric Motion Vectors Algorithm Using First Guess by Optical Flow Method (옵티컬 플로우 방법으로 계산된 초기 바람 추정치에 따른 대기운동벡터 알고리즘 개선 연구)

  • Oh, Yurim;Park, Hyungmin;Kim, Jae Hwan;Kim, Somyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.763-774
    • /
    • 2020
  • Wind data forecasted from the numerical weather prediction (NWP) model is generally used as the first-guess of the target tracking process to obtain the atmospheric motion vectors(AMVs) because it increases tracking accuracy and reduce computational time. However, there is a contradiction that the NWP model used as the first-guess is used again as the reference in the AMVs verification process. To overcome this problem, model-independent first guesses are required. In this study, we propose the AMVs derivation from Lucas and Kanade optical flow method and then using it as the first guess. To retrieve AMVs, Himawari-8/AHI geostationary satellite level-1B data were used at 00, 06, 12, and 18 UTC from August 19 to September 5, 2015. To evaluate the impact of applying the optical flow method on the AMV derivation, cross-validation has been conducted in three ways as follows. (1) Without the first-guess, (2) NWP (KMA/UM) forecasted wind as the first-guess, and (3) Optical flow method based wind as the first-guess. As the results of verification using ECMWF ERA-Interim reanalysis data, the highest precision (RMSVD: 5.296-5.804 ms-1) was obtained using optical flow based winds as the first-guess. In addition, the computation speed for AMVs derivation was the slowest without the first-guess test, but the other two had similar performance. Thus, applying the optical flow method in the target tracking process of AMVs algorithm, this study showed that the optical flow method is very effective as a first guess for model-independent AMVs derivation.

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

Moment Magnitude Determination Using P wave of Broadband Data (광대역 지진자료의 P파를 이용한 모멘트 규모 결정)

  • Hwang, Eui-Hong;Lee, Woo-Dong;Jo, Bong-Gon;Jo, Beom-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • A method to quickly estimate broadband moment magnitudes (Mwp) to warn regional and teleseismic tsunamigenic earthquakes is tested for application of the method to the different seismic observation environment. In this study, the Mwp is calculated by integrating far-field P-wave or pP-wave of vertical component of displacement seismograms in time domain from earthquakes, having magnitude greater than 5.0 and occurred in and around the Korean peninsula from 2000 to 2006. We carefully set up the size of the time window for the computations to exclude S wave phases and other phases following after the P wave phase. The P wave velocities and the densities from the averaged Korean crustal model are used in the computations. Instrumental correction was performed to remove dependency on the seismograph. The Mwp after the instrumental correction is about 0.1 greater than the Mwp before the correction. The comparison of our results to the those of foreign agencies such as JMA and Havard CMT catalogues shows a higher degree of similarity. Thus our results provide an effective tool to estimate the earthquake size, as well as to issue the necessary information to a tsunami warning system when the effective earthquake occurs around the peninsula.

  • PDF