• Title/Summary/Keyword: KMA GDAPS

Search Result 16, Processing Time 0.026 seconds

Construction of the Regional Prediction System using a Regional Climate Model and Validation of its Wintertime Forecast (지역기후모델을 이용한 상세계절예측시스템 구축 및 겨울철 예측성 검증)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.17-33
    • /
    • 2011
  • A dynamical downscaling system for seasonal forecast has been constructed based on a regional climate model, and its predictability was investigated for 10 years' wintertime (December-January-February; DJF) climatology in East Asia. Initial and lateral boundary conditions were obtained from the operational seasonal forecasting data, which are realtime output of the Global Data Assimilation and Prediction System (GDAPS) at Korea Meteorological Administration (KMA). Sea surface temperature was also obtained from the operational forecasts, i.e., KMA El-Nino and Global Sea Surface Temperature Forecast System. In order to determine the better configuration of the regional climate model for East Asian regions, two sensitivity experiments were carried out for one winter season (97/98 DJF): One is for the topography blending and the other is for the cumulus parameterization scheme. After determining the proper configuration, the predictability of the regional forecasting system was validated with respect to 850 hPa temperature and precipitation. The results showed that mean fields error and other verification statistics were generally decreased compared to GDAPS, most evident in 500 hPa geopotential heights. These improved simulation affected season prediction, and then HSS was better 36% and 11% about 850 hPa temperature and precipitation, respectively.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.

Performance of MTM in 2006 Typhoon Forecast (이동격자태풍모델을 이용한 2006년 태풍의 진로 및 강도 예측성능 평가)

  • Kim, Ju-Hye;Choo, Gyo-Myung;Kim, Baek-Jo;Won, Seong-Hee;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The Moving-nest Typhoon Model (MTM) was installed on the Korea Meteorological Administration (KMA)'s CRAY X1E in 2006 and started its test operation in August 2006 to provide track and intensity forecasts of tropical cyclones. In this study, feasibility of the MTM forecast is compared with the Global Data Assimilation and Prediction System (GDAPS) of the KMA and the operational typhoon forecast models in the Japan Meteorological Agency (JMA), from the sixth tropical cyclone to the twentieth in 2006. Forecast skills in terms of the storm position error of the two KMA models were comparable, but MTM showed a slightly better ability. While both GDAPS and MTM produced larger errors than JMA models in track forecast, the predicted intensity was much improved by MTM, making it comparable to the JMA's typhoon forecast model. It is believed that the Geophysical Fluid Dynamics Laboratory (GFDL) bogus initialization method in MTM improves the ability to forecast typhoon intensity.

Predictability of Northern Hemisphere Blocking in the KMA GDAPS during 2016~2017 (기상청 전지구예측시스템 자료에서의 2016~2017년 북반구 블로킹 예측성 분석)

  • Roh, Joon-Woo;Cho, Hyeong-Oh;Son, Seok-Woo;Baek, Hee-Jeong;Boo, Kyung-On;Lee, Jung-Kyung
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • Predictability of Northern Hemisphere blocking in the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is evaluated for the period of July 2016 to May 2017. Using the operational model output, blocking is defined by a meridional gradient reversal of 500-hPa geopotential height as Tibaldi-Molteni Index. Its predictability is quantified by computing the critical success index and bias score against ERA-Interim data. It turns out that Northwest Pacific blockings, among others, are reasonably well predicted with a forecast lead time of 2~3 days. The highest prediction skill is found in spring with 3.5 lead days, whereas the lowest prediction skill is observed in autumn with 2.25 lead days. Although further analyses are needed with longer dataset, this result suggests that Northern Hemisphere blocking is not well predicted in the operational weather prediction model beyond a short-term weather prediction limit. In the spring, summer, and autumn periods, there was a tendency to overestimate the Western North Pacific blocking.

Extratropical Prediction Skill of KMA GDAPS in January 2019 (기상청 전지구 예측시스템에서의 2019년 1월 북반구 중고위도 지역 예측성 검증)

  • Hwang, Jaeyoung;Cho, Hyeong-Oh;Lim, Yuna;Son, Seok-Woo;Kim, Eun-Jung;Lim, Jeong-Ock;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • The Northern Hemisphere extratropical prediction skill of the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is examined for January 2019. The real-time prediction skill, evaluated with mean squared skill score (MSSS) of 30-90°N geopotential height field at 500 hPa (Z500), is ~8 days in the troposphere. The MSSS of Z500 considerably decreases after 3 days mainly due to the increasing eddy errors. The eddy errors are largely explained by the eddy-phased errors with minor contribution of amplitude errors. In particular, planetary-scale eddy errors are considered as a main reason of rapidly increasing errors. It turns out that such errors are associated with the blocking highs over North Pacific (NP) and Euro-Atlantic (EA) regions. The model overestimates the blocking highs over NP and EA regions in time, showing dependence of blocking predictability on blocking initializations. This result suggests that the extratropical prediction skill could be improved by better representing blocking in the model.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.

Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS) (대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향)

  • Kim, So-Young;Chun, Hye-Yeong;Park, Byoung-Kwon;Lee, Hae-Jin
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

Characteristics of the Extratropical Transition of Tropical Cyclones over the Western North Pacific using the Cyclone Phase Space (CPS) Diagram (북서태평양에서 저기압 위상 공간도법을 이용한 태풍의 온대저기압화 특성 분석)

  • Lee, Ji-Yun;Park, Jong-Suk;Kang, KiRyong;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • The characteristics of the typhoon's extratropical transition (ET) over the western North Pacific area were investigated using the cyclone phase space (CPS) diagram method suggested by Hart (2003). The data used in this study were the global data assimilation prediction system (GDAPS) and NCEP data set. The number of typhoons selected were 75 cases during 2002 to 2007, and the three parameters were analyzed : the motion relative thickness asymmetry of the storm (B), the upper thermal wind shear and the lower thermal wind shear. Comparing the best-track data provided by the Regional Specialized Meteorological Center /Tokyo, the time of the ET based on CPS was 2~6 hours earlier than the best-track data. And it was shown that the 400- km and 30 kt wind radius of storm for the CPS method were better agreement than the previous suggested radius 500- km.

Realtime Streamflow Prediction using Quantitative Precipitation Model Output (정량강수모의를 이용한 실시간 유출예측)

  • Kang, Boosik;Moon, Sujin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.579-587
    • /
    • 2010
  • The mid-range streamflow forecast was performed using NWP(Numerical Weather Prediction) provided by KMA. The NWP consists of RDAPS for 48-hour forecast and GDAPS for 240-hour forecast. To enhance the accuracy of the NWP, QPM to downscale the original NWP and Quantile Mapping to adjust the systematic biases were applied to the original NWP output. The applicability of the suggested streamflow prediction system which was verified in Geum River basin. In the system, the streamflow simulation was computed through the long-term continuous SSARR model with the rainfall prediction input transform to the format required by SSARR. The RQPM of the 2-day rainfall prediction results for the period of Jan. 1~Jun. 20, 2006, showed reasonable predictability that the total RQPM precipitation amounts to 89.7% of the observed precipitation. The streamflow forecast associated with 2-day RQPM followed the observed hydrograph pattern with high accuracy even though there occurred missing forecast and false alarm in some rainfall events. However, predictability decrease in downstream station, e.g. Gyuam was found because of the difficulties in parameter calibration of rainfall-runoff model for controlled streamflow and reliability deduction of rating curve at gauge station with large cross section area. The 10-day precipitation prediction using GQPM shows significantly underestimation for the peak and total amounts, which affects streamflow prediction clearly. The improvement of GDAPS forecast using post-processing seems to have limitation and there needs efforts of stabilization or reform for the original NWP.