• Title/Summary/Keyword: KMA

Search Result 818, Processing Time 0.022 seconds

Comparison of earthquake parameters between KMA and ISC (1978 ~ 1998) (기상청과 ISC의 지진자료 비고 (1978 ~ 1998))

  • 전명순;박윤경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.44-51
    • /
    • 2001
  • We compare with earthquake parameters of KMA(Korea Meteorological Administration) and ISC(International Seismological Centre) to understand characteristics of earthquake using 30 earthquakes data acquired from 1978 to 1998 in Korea. We calculate difference of KMA between ISC epicentral distance and analyze for magnitude and year. Difference of epicentral distance decreases according to increase of magnitude and have no concern with year. That is the lowest in case of earthquake occurring in land of south Korea. We estimate relation formula for magnitude of KMA and ESC. The result can be expressed in KMA( $M_{L}$) and ISC( $m_{b}$ ) as $M_{L}$$^{KMA}$ = 0.70* $m_{b}$ $^{ISC}$+1.03 and in KMA( $M_{L}$) and ISC( $M_{L}$ as $M_{L}$$^{KMA}$=0.47* $M_{L}$$^{ISC}$+1.37X> ISC/+1.371.371.37

  • PDF

Cloud Physics Observation System (CPOS) and Validation of Its Products (구름물리 관측시스템 및 산출물 검정)

  • Chang, Ki-Ho;Oh, Sung-Nam;Jeong, Ki-Deok;Yang, Ha-Young;Lee, Myoung-Joo;Jeong, Jin-Yim;Cho, Yohan;Kim, Hyo-Kyung;Park, Gyun-Myeong;Yum, Seong-Soo;Cha, Joo-Wan
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts (공군수송기와 기상항공기를 연계한 인공강우 사례실험 분석)

  • Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.899-914
    • /
    • 2023
  • Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.

Global Ocean Observation with ARGO Floats : Introduction to ARGO Program (ARGO 플로트를 이용한 전지구 해양관측 : ARGO 프로그램 소개)

  • Lee, Homan;Chang, You-Soon;Kim, Tae-Hee;Kim, Ji-Ho;Youn, Yung-Hoon;Seo, Jang-Won;Seo, Tae-Gun
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.4-23
    • /
    • 2004
  • To monitor the world's oceans and understand the role of the oceans for climate change, an Array for Real-time Geostrophic Oceanography (ARGO) program has been carried out since year 2000. Autonomous profiling floats of about 820 are reporting the vertical temperature, salinity, and pressure profiles of the upper 2000 m underwater at regular time intervals. Meteorological Research Institute (METRI) of Korea Meteorological Administration (KMA) launched 45 floats at the East Sea and the western Pacific to understand characteristics of water properties and develop the global ocean observation system as a part of international cooperation project. In this study, we introduce ARGO program, METRI-ARGO and the features of APEX float itself and their data formats. We also describe the significant points to be considered for using ARGO data.

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.

A Study on the Development of a Korean Manual Alphabet Learning Game with Avatar (아바타를 내장한 한글 지문자 학습 게임 개발에 관한 연구)

  • Oh, Youung-Joon;Jung, Kee-Chul
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.67-80
    • /
    • 2009
  • In this paper, we described the development of a Korean Manual Alphabet (KMA) learning game with avatar. KMA letters correspond to the vocabulary of Korean Sign Language (KSL) when spelling a word. Each KMA letter corresponds to a letter of the Korean Alphabet (KA) and KA is represented as hand shapes by sign language user. We developed a KMA learning game for a beginner to learn KMA letters from sign language avatar and practice KMA presentation easily. The system composed of sign language teacher avatar GUI popup window based on OpenGL, KMA letter recognition module, KA letter raining game module and USB camera. A user learns a KMA letter with expressing KA syllabic from avatar and inputs a KMA letter to the system using USB camera. We evaluated the efficiency of the developed system through the verification of users.

  • PDF

Research and Development for Atmospheric Sciences and Earthquake of Korea (기상.지진 R&D의 최근 동향 및 발전 방향)

  • Kim, Do-Yong;Oh, Jai-Ho;Lee, Chan-Goo;Hahm, In-Kyeong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2007
  • Of late, natural disasters are becoming more frequent and the damages caused by these are quite substantial. All these are mainly due to a climate change. Many scientists from various countries are therefore engaged in research on atmospheric sciences and seismology. Korea meteorological administration (KMA) has established an advanced research and development center "CATER" for atmospheric sciences and earthquake. CATER has been managing and promoting the five major fields of research such as strategic meteorology, applied meteorology, climate change/countermeasure, earthquake, and research planning for CATER. Compared to 2006, CATER in 2007 has increased the funding by 7% and 5% for the climate change/countermeasure and the earthquake research fields, respectively. Also, the distribution rate of funding in 2007 has increased in 12% for basic research, 6% for university research organization, and 13% for the local area. CATER is trying to construct basic system and infrastructure for atmospheric sciences and earthquake research based on information technology. KMA has also a middle-term vision plan "World Best 365" for atmospheric science and earthquake research. These will give us a chance to become advanced nation in field of atmospheric sciences and seismology.