• Title/Summary/Keyword: KM algorithm

Search Result 311, Processing Time 0.023 seconds

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Radionuclide identification based on energy-weighted algorithm and machine learning applied to a multi-array plastic scintillator

  • Hyun Cheol Lee ;Bon Tack Koo ;Ju Young Jeon ;Bo-Wi Cheon ;Do Hyeon Yoo ;Heejun Chung;Chul Hee Min
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3907-3912
    • /
    • 2023
  • Radiation portal monitors (RPMs) installed at airports and harbors to prevent illicit trafficking of radioactive materials generally use large plastic scintillators. However, their energy resolution is poor and radionuclide identification is nearly unfeasible. In this study, to improve isotope identification, a RPM system based on a multi-array plastic scintillator and convolutional neural network (CNN) was evaluated by measuring the spectra of radioactive sources. A multi-array plastic scintillator comprising an assembly of 14 hexagonal scintillators was fabricated within an area of 50 × 100 cm2. The energy spectra of 137Cs, 60Co, 226Ra, and 4K (KCl) were measured at speeds of 10-30 km/h, respectively, and an energy-weighted algorithm was applied. For the CNN, 700 and 300 spectral images were used as training and testing images, respectively. Compared to the conventional plastic scintillator, the multi-arrayed detector showed a high collection probability of the optical photons generated inside. A Compton maximum peak was observed for four moving radiation sources, and the CNN-based classification results showed that at least 70% was discriminated. Under the speed condition, the spectral fluctuations were higher than those under dwelling condition. However, the machine learning results demonstrated that a considerably high level of nuclide discrimination was possible under source movement conditions.

A Study on the Principal Factors of Rail Tunnel Cross-Section Design due to High Speed (고속화에 따른 철도터널의 단면규모 결정요소에 대한 고찰)

  • Ryu, Dong-Hun;Lee, Hyeon-Jeong;Han, Sang-Yeon;Shin, Hyon-Il;Jung, Byung-Ryul;Song, Chung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1487-1501
    • /
    • 2011
  • Recently, fast-growing up railway transportations. Because, regional traffic congestion problem solving and a period of rapid expansion to meet the demand of industries. In addition the government also suggest to new paradigm for the future 'Low Carbon, Green Growth' is presented as a new national vision. To meet the social needs and the time demands, Last of the railway increase very long tunnels and huge deep tunnels. Especially this trend accelerated high speed up in the tunnel, the revision of design criteria and research challenges are being actively improved. Mainly in the tunnel cross-section was under the control of the vehicle train speed 150km/hr by the construction of the vehicle cross-section of the tunnel. More than 200km/hr rail tunnel depending on the vehicle's speed caused the tunnel to the pressure fluctuations will be governed by the aerodynamic changes. Considering the economy to ensure the optimum cross-section of the railway tunnel to the description scheme is selected cross-section of the railway tunnel to determine the size domestic or international railway tunnel for the elements((based on fast Algorithm design criteria, the center line spacing, streetcar line, cross-sectional shape, sectoral issues, such as interface and aerodynamics) based on design practices and to review results. In this study, to propose guidelines depending on the size of a railway tunnel cross section for the size of the determining reasonable factors when designing the railway tunnel and cost-effective standards guidelines.

  • PDF

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Interference Analysis of Wireless Systems with Arbitrary Antenna Patterns and Geographic Information in the VHF/UHF Bands (VHF/UHF 대역에서 지리정보와 임의 안테나 패턴을 갖는 무선시스템의 간섭분석 연구)

  • Suh, Kyoung-Whoan
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.445-454
    • /
    • 2013
  • By using the radio propagation prediction of Rec. ITU-R P.1546, geographic information system, and S-I plane, we presented the methodology of interference analysis based on the minimum coupling loss, and also suggested the local coordinate system for calculating azimuth and elevation angles between the victim receiver and the interferer for an arbitrary antenna pattern. To check the presented algorithm, the map with the land-sea mixed area was taken for the given area of $80{\times}60[km^2]$ as real geography information. Field strength, path profile, and protection ratio with maximum allowable interference level have been illustrated for radar and fixed wireless system for the assumed frequency. In addition interference power of the victim receiver was calculated asa function of azimuth and elevation angles of the interferer. The developed methodology of interference analysis in the VHF and UHF bands can be actually applied to assess interoperability as well as compatibility in the civil or military applications.

Coastline Change Detection Using CORONA Imagery (CORONA 위성영상을 이용한 동해안 해안선 변화탐지)

  • Kim Gi Hong;Choi Seung Pil;Yook Woon Soo;Song Yeong Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.419-426
    • /
    • 2005
  • Recently the interest in coast area has been increased in the view of management and usage of national territory. Rapid coastal development has caused directly or indirectly coastline changes which may make environmental problems or threaten the nearby residents' livelihood. CORONA was one of the US satellite reconnaissance programs, and it's imagery provides informations about past coastline with high resolution. In this study, we applied rigorous geo-referencing algorithm to CORONA imagery in order to generate the mosaic image of the East coast area of 1969 with 20m accuracy. This old era CORONA mosaic image was compared with SPOT image of 2005, and the coastline changes were analyzed. We were able to ascertain considerable erosion and accumulation in some parts of study area. erosion area which is calculated from imagery is $0.32\;km^2$ from Kosung to Kangnung. Results of coastline change detection can provide useful information for related studies.

Evaluation of AIS-TWR for Maritime Asynchronous R-mode (해사업무용 비동기식 R-mode를 위한 AIS-TWR 성능 평가)

  • Shim, Woo-Seong;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.87-92
    • /
    • 2017
  • To enhance the reliability and/or resilience of the PNT service included in the e-Navigation strategy of the IMO, the evaluation of the AIS-TWR method for the asynchronous R-mode for maritime service, which is available even in the absence of the GNSS, is described. For the AIS-TWR, which is capable of ranging through message exchange even without high precision synchronization, the operation scenario and the error factors according to the AIS system specifications are proposed and analyzed. Cramer-Rao Lower Bound is presented for the performance evaluation of the AIS-TWR algorithm. A simulation by AIS-TWR method of two AIS systems in a 3 km static environment shows estimation error of about 41m compared to the real value..

ATMOSPHERIC CORRECTION TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI) ON COMS

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.467-470
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meteorological Satellite (COMS) is scheduled for launch in 2008. GOCI includes the eight visible-to-near-infrared (NIR) bands, 0.5km pixel resolution, and a coverage region of 2500 ${\times}$ 2500km centered at 36N and 130E. GOCI has had the scope of its objectives broadened to understand the role of the oceans and ocean productivity in the climate system, biogeochemical variables, geological and biological response to physical dynamics and to detect and monitor toxic algal blooms of notable extension through observations of ocean color. To achieve these mission objectives, it is necessary to develop an atmospheric correction technique which is capable of delivering geophysical products, particularly for highly turbid coastal regions that are often dominated by strongly absorbing aerosols from the adjacent continental/desert areas. In this paper, we present a more realistic and cost-effective atmospheric correction method which takes into account the contribution of NIR radiances and include specialized models for strongly absorbing aerosols. This method was tested extensively on SeaWiFS ocean color imagery acquired over the Northwest Pacific waters. While the standard SeaWiFS atmospheric correction algorithm showed a pronounced overcorrection in the violet/blue or a complete failure in the presence of strongly absorbing aerosols (Asian dust or Yellow dust) over these regions, the new method was able to retrieve the water-leaving radiance and chlorophyll concentrations that were consistent with the in-situ observations. Such comparison demonstrated the efficiency of the new method in terms of removing the effects of highly absorbing aerosols and improving the accuracy of water-leaving radiance and chlorophyll retrievals with SeaWiFS imagery.

  • PDF