• 제목/요약/키워드: KLT tracking

Search Result 25, Processing Time 0.02 seconds

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Gim, Ju-Hyeon;Choi, Han-Go
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.319-322
    • /
    • 2013
  • 본 연구에서는 이동 객체를 컬러기반에서 추적하는데 있어 주변 환경 변화와 추적중인 객체 색상이 유사한 물체가 존재할 경우 보다 안정적으로 추적할 수 있는 방법을 제시한다. 백그라운드 차영상과 모폴로지 연산을 통하여 이동 객체를 검출하고, 매 프레임마다 발생하는 밝기 및 주변 환경의 영향을 고려하여 기존의 CamShift 알고리즘을 보완하였다. 추적 물체와 색상이 비슷한 주변 물체가 존재할 경우 개선된 CamShift는 불안정한 추적을 보여주었는데 이를 해결하기 위해 Optical Flow기반의 KLT 알고리즘과 병합하는 방법을 제시하였다. 실험 결과를 통해 제안된 추적 방법은 기존의 단점을 보완하였으며 추적성능이 개선됨을 확인하였다.

Integrated SIFT Algorithm with Feature Point Matching Filter for Relative Position Estimation (특징점 정합 필터 결합 SIFT를 이용한 상대 위치 추정)

  • Gwak, Min-Gyu;Sung, Sang-Kyung;Yun, Suk-Chang;Won, Dae-Hee;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.759-766
    • /
    • 2009
  • The purpose of this paper is an image processing algorithm development as a base research achieving performance enhancement of integrated navigation system. We used the SIFT (Scale Invariant Feature Transform) algorithm for image processing, and developed feature point matching filter for rejecting mismatched points. By applying the proposed algorithm, it is obtained better result than other methods of parameter tuning and KLT based feature point tracking. For further study, integration with INS and algorithm optimization for the real-time implementation are under investigation.

Robust Hand Tracking and Recognition System Using Multiple Feature Data Fusion (다중 특징을 이용한 견고한 손추척 및 인식 시스템)

  • Chun, Sung-Yong;Park, Shin-Won;Jang, Ho-Jin;Lee, Chan-Su;Sohn, Myoung-Gyu;Lee, Sang-Heon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.490-495
    • /
    • 2010
  • 본 연구에서는 효과적인 손 제스처 인식을 위하여 다중 특징을 이용한 견고한 손 추적 방법을 제시한다. 기존의 많은 손추적 장치들이 칼라 정보나 모션 정보와 같은 단일한 정보를 바탕으로 손을 검출하고, 이를 바탕으로 손의 추적하는 방법들을 제시하고 있다. 이러한 방법들의 경우에는 손 추적 중에 환경이나 상황이 변하게 되면, 손추적의 정확도가 현저하게 떨어지게 된다. 본 연구에서는 이러한 문제점들을 보완하기 위하여, Adaboost를 이용한 손 검출, 역투영을 기반으로 손 색상을 이용한 추적, KLT를 바탕으로 한 모션 추적을 이용한 검출을 동시에 수행하며, 각 센서의 추적 결과에 대한 칼만 필터 적용뿐 아니라, 각 센서 정보를 통합하여 견고한 결과를 얻기 위한 방법을 제시한다. 이를 바탕으로 손제스처 인식 시스템을 개발하였으며, 개발된 제스처 인식을 바탕으로 비디오 플레이를 제어하는 시스템을 구현하였다.

  • PDF

Respiration Rate Measurement based on Motion Compensation using Infrared Camera (열화상 카메라를 이용한 움직임 보정 기반 호흡 수 계산)

  • Kwon, Jun Hwan;Shin, Cheung Soo;Kim, Jeongmin;Oh, Kyeong Taek;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1076-1089
    • /
    • 2018
  • Respiration is the process of moving air into and out of the lung. Respiration changes the temperature in the chamber while exchanging energy. Especially the temperature of the face. Respiration monitoring using an infrared camera measures the temperature change caused by breathing. The conventional method assumes that motion is not considered and measures respiration. These assumptions can not accurately measure the respiration rate when breathing moves. In addition, the respiration rate measurement is performed by counting the number of peaks of the breathing waveform by displaying the position of the peak in a specific window, and there is a disadvantage that the breathing rate can not be measured accurately. In this paper, we use KLT tracking and block matching to calibrate limited weak movements during breathing and extract respiration waveform. In order to increase the accuracy of the respiration rate, the position of the peak used in the breath calculation is calculated by converting from a single point to a high resolution. Through this process, the respiration signal could be extracted even in weak motion, and the respiration rate could be measured robustly even in various time windows.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.