• Title/Summary/Keyword: KLF4

Search Result 37, Processing Time 0.029 seconds

Repression of CCSP Expression by KLF4 (KLF4에 의한 CCSP 발현 억제)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1432-1437
    • /
    • 2018
  • Clara cell secretory protein (CCSP) plays an important role in protecting the lungs from inflammation. This research focuses on identifying the cis-element for binding the repressor of CCSP gene expression. A DNase I footprinting experiment revealed three protected regions between -812 and -768 bp (45 bp) of the mCCSP promoter. One motif (D3: GCCTGGGAA) was 100% conserved across rat, hamster, and human. The addition of excess amounts of the D3 motif exhibited high competition within that 45 bp range in an electrophoretic mobility shift assay. However, when mutated D3 ($G{\underline{AA}}TG{\underline{TT}}AA$) was used, the competition was significantly reduced. This demonstrates that the D3 motif within that 45 bp region of the mCCSP promoter is an important site for the protein-DNA interaction. Transient transfection assays with -756 Luc resulted in highly decreased expression of CCSP than those with -812 Luc, suggesting that the 45 bp could function as a binding site for the repressor. Co-transfection of KLF4 exhibited significant repression of the -812 Luc but not the -768 Luc which clearly shows that KLF4 might function as a repressor for the CCSP gene and also suggests that the D3 motif is strongly involved in the binding of KLF4. In addition, when anti-KLF4 antibody was added, super-shifted bands were observed. This result demonstrates that KLF4 could function as a repressor by binding to this 45 bp region of the CCSP promoter and that the D3 motif might be involved in the specific binding of KLF4.

Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

  • Ha, Jung Min;Yun, Sung Ji;Jin, Seo Yeon;Lee, Hye Sun;Kim, Sun Ja;Shin, Hwa Kyoung;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that $kr{\ddot{u}}ppel$-like factor 8 (KLF8) is essential for tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with $TNF{\alpha}$ significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by $TNF{\alpha}$ stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and $NF{\kappa}B$ binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, $SM22{\alpha}$, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and $SM22{\alpha}$ concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with $TNF{\alpha}$ enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and $SM22{\alpha}$, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype.

Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer

  • Zohre, Sadeghi;Kazem, Nejati-Koshki;Abolfazl, Akbarzadeh;Mohammad, Rahmati-Yamchi;Aliakbar, Movassaghpour;Effat, Alizadeh;Zahra, Davoudi;Hassan, Dariushnejad;Nosratollah, Zarghami
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6581-6586
    • /
    • 2014
  • Background: The istone deacetylase (HDAC) inhibitor trichostatin A (TSA) is known to mediate the regulation of gene expression and antiproliferation activity in cancer cells. Kr$\ddot{u}$ppel-like factor 4 (klf4) is a zinc finger-containing transcription factor of the SP/KLF family, that is expressed in a variety of tissues and regulates cell proliferation, differentiation, tumorigenesis, and apoptosis. It may either either function as a tumor suppressor or an oncogene depending on genetic context of tumors. Aims: In this study, we tested the possibility that TSA may increase klf4 expression and cancer cell growth inhibition and apoptosis in SKOV-3 and A549 cells. Materials and Methods: The cytotoxicity of TSA was determined using the MTT assay test, while klf4 gene expression was assessed by real time PCR andto ability of TSA to induce apoptosis using a Vybrant Apoptosis Assay kit. Results: Our results showed that TSA exerted dose and time dependent cytotoxicity effect on SKOV-3 and A549 cells. Moreover TSA up-regulated klf4 expression. Flow cytometric analysis demonstrated that apoptosis was increased after TSA treatment. Conclusions: Taken together, this study showed that TSA increased klf4 expression in SKOV3 and A549 cell lines, consequently, klf4 may played a tumor-suppressor role by increasing both cell growth inhibition and apoptosis. This study sheds light on the details of molecular mechanisms of HDACI-induced cell cycle arrest and apoptosis.

Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells

  • Kwon, Kisang;Suh, Hyun-Woo;Kim, Hong Geun;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time-dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation.

Synergistic Anti-tumor Effect of KLF4 and Curcumin in Human Gastric Carcinoma Cell Line

  • Ji, Jun;Wang, He-Shuang;Gao, Yan-Yan;Sang, Li-Min;Zhang, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7747-7752
    • /
    • 2014
  • Kr$\ddot{u}$ppel-like factor 4 is a transcription factor which plays an important role in development and progression of various carcinomas. Curcumin characterized by excellent anti-cancer properties is regarded as a serviceable natural compound used in carcinoma therapy. This study aimed at exploring the impact of KLF4 overexpression in cooperation with curcumin on the proliferation, apoptosis and invasion of human gastric carcinoma BGC-823 cells. Flow cytometry analysis, CCK-8 assays, transwell assays and Western blot results showed that KLF4 overexpression combined with curcumin had significant anti-proliferation, pro-apoptosis and anti-invasion effects on BGC-823 cells. We also found that KLF4 had synergistic effects with curcumin, better promoting apoptosis and inhibiting proliferation and invasion of gastric carcinona cells. These results indicate that KLF4 could be used as a potential therapeutic target; curcumin could act as an auxiliary and provide a promising therapeutic strategy in stomach cancer.

Expression Pattern of KLF4 in Korean Gastric Cancers (한국인 위암에서 KLF4 단백 발현 양상)

  • Song, Jae-Hwi;Cho, Yong-Gu;Kim, Chang-Jae;Park, Cho-Hyun;Kim, Su-Young;Nam, Suk-Woo;Lee, Sug-Hyung;Yoo, Nam-Jin;Lee, Jung-Young;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • v.5 no.3 s.19
    • /
    • pp.200-205
    • /
    • 2005
  • Purpose: KLF4, a member of the KLF family, is a zinc finger tumor suppressor protein that is critical for gastric epithelial homeostasis. Our aim was to determine whether the altered expression of KLF4 might be associated with gastric cancer development and, if so, to determine to which pathologic parameter it is linked. Materials and Methods: For the construction of the gastric cancer tissue microarray, 84 paraffin-embedded tissues containing gastric cancer areas were cored 3 times and transferred to the recipient master block. The expression pattern of KLF4 was examined on tissue microarray slides by using immunohistochemistry and was compared with pathologic parameters, including histologic type, depth of invasion, lymph node metastasis, and peritoneal dissemination. Results: The KLF4 protein was expressed in cytoplasm and nucleus of superficial and foveolar epithelial cells in the normal gastric mucosa. We found markedly reduced or loss of KLF4 expression in 43 (51.2%) of the 84 gastric cancer tissues. There was no significant correlation between KLF4 expression and pathologic parameters, including histologic type, depth of invasion, lymph node metastasis and peritoneal dissemination. Conclusion: Our findings suggest that altered expression of KLF4 may contribute to abnormal regulation of gastrointestinal epithelial cell growth and differentiation and to the development of Korean gastric cancer, as an early event.

  • PDF

LINC00703 Acts as a Tumor Suppressor via Regulating miR-181a/KLF6 Axis in Gastric Cancer

  • Yang, Haiyang;Peng, Minqi;Li, Yanjiao;Zhu, Renjie;Li, Xiang;Qian, Zhengjiang
    • Journal of Gastric Cancer
    • /
    • v.19 no.4
    • /
    • pp.460-472
    • /
    • 2019
  • Purpose: Long noncoding RNA 00703 (LINC00703) was found originating from a region downstream of Kruppel-like factor 6 (KLF6) gene, having 2 binding sites for miR-181a. Since KLF6 has been reported as a target of miR-181a in gastric cancer (GC), this study aims to investigate whether LINC00703 regulates the miR-181a/KLF6 axis and plays a functional role in GC pathogenesis. Materials and Methods: GC tissues, cell lines, and nude mice were included in this study. RNA binding protein immunoprecipitation (RIP) and pull-down assays were used to evaluate interaction between LINC00703 and miR-181a. Quantitative real-time polymerase chain reaction and western blot were applied for analysis of gene expression at the transcriptional and protein levels. A nude xenograft mouse model was used to determine LINC00703 function in vivo. Results: We revealed that LINC00703 competitively interacts with miR-181a to regulate KLF6. Overexpression of LINC00703 inhibited cell proliferation, migration/invasion, but promoted apoptosis in vitro, and arrested tumor growth in vivo. LINC00703 expression was found to be decreased in GC tissues, which was positively correlated with KLF6, but negatively with the miR-181a levels. Conclusions: LINC00703 may have an anti-cancer function via modulation of the miR-181a/KLF6 axis. This study also provides a new potential diagnostic marker and therapeutic target for GC treatment.

TT Mutant Homozygote of Kruppel-like Factor 5 Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children

  • Choi, Jung Ran;Kwon, In-Su;Kwon, Dae Young;Kim, Myung-Sunny;Lee, Myoungsook
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.263-271
    • /
    • 2013
  • We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p=0.030). The highest muscle was observed in the children with TT compared with CC (p=0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p=0.029 vs. p=0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p=0.018, respectively), while Rohrer's index could explain the usual decrease in BMR (adjust $r^2$=1.000, p < 0.001, respectively). We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

Biological Control of Soft Rot on Chinese Cabbage Using Beneficial Bacterial Agents in Greenhouse and Field (유용세균(Beneficial Bacterial Agents)을 이용한 배추 무름병의 생물적 방제)

  • Shrestha, Anupama;Kim, Eun-Chang;Lim, Chuen-Keun;Cho, Sae-Youll;Hur, Jang-Hyun;Park, Duck-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.325-331
    • /
    • 2009
  • Three beneficial bacterial agents, Lactobacillus strain KLF01, Lactococcus strain KLC02 and Paenibacillus strain KPB3 were showed clear zone against plated Pectobacterium carotovorum subsp. carotovorum (Pcc) soft rot pathogen. In greenhouse test, bio-control efficacy was more significantly effective in the treatments by KLC02 and KPB3 as 64%, 50%, 56% and 66%, 57%, 58% according to date of evaluation, respectively. In case of KLF01 control effect was relatively lower than treatments of KLC02 and KPB3 but its efficacy was still significantly observed when compared to control (only water treatment). Furthermore, KLF01, KLC02 and KPB3 showed 55%, 60% and 62% bio-control efficacy, respectively in field test from early March to late July of 2009. Thus, we suggest that these strains can be useful as bio-control agents against soft rot caused by Pcc.