Biological Control of Soft Rot on Chinese Cabbage Using Beneficial Bacterial Agents in Greenhouse and Field

유용세균(Beneficial Bacterial Agents)을 이용한 배추 무름병의 생물적 방제

  • Shrestha, Anupama (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and life Sciences, Kangwon National University) ;
  • Kim, Eun-Chang (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and life Sciences, Kangwon National University) ;
  • Lim, Chuen-Keun (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and life Sciences, Kangwon National University) ;
  • Cho, Sae-Youll (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and life Sciences, Kangwon National University) ;
  • Hur, Jang-Hyun (Division of Biological Environment, College of Agricultural and Life Sciences, Kangwon National University) ;
  • Park, Duck-Hwan (Laboratory of Bacterial Genetics and Biotechnology, Division of Bio-Resources Technology, College of Agriculture and life Sciences, Kangwon National University)
  • 아누파마 슈레스타 (강원대학교 농업생명과학대학 생물자원공학부 응용생물) ;
  • 김은창 (강원대학교 농업생명과학대학 생물자원공학부 응용생물) ;
  • 임춘근 (강원대학교 농업생명과학대학 생물자원공학부 응용생물) ;
  • 조세열 (강원대학교 농업생명과학대학 생물자원공학부 응용생물) ;
  • 허장현 (강원대학교 농업생명과학대학 자원생물환경학과) ;
  • 박덕환 (강원대학교 농업생명과학대학 생물자원공학부 응용생물)
  • Published : 2009.12.31

Abstract

Three beneficial bacterial agents, Lactobacillus strain KLF01, Lactococcus strain KLC02 and Paenibacillus strain KPB3 were showed clear zone against plated Pectobacterium carotovorum subsp. carotovorum (Pcc) soft rot pathogen. In greenhouse test, bio-control efficacy was more significantly effective in the treatments by KLC02 and KPB3 as 64%, 50%, 56% and 66%, 57%, 58% according to date of evaluation, respectively. In case of KLF01 control effect was relatively lower than treatments of KLC02 and KPB3 but its efficacy was still significantly observed when compared to control (only water treatment). Furthermore, KLF01, KLC02 and KPB3 showed 55%, 60% and 62% bio-control efficacy, respectively in field test from early March to late July of 2009. Thus, we suggest that these strains can be useful as bio-control agents against soft rot caused by Pcc.

세 종류의 유용세균, Lactobacillus KLF01, Lactococcus KLC02 그리고 Paenibacillus KPB3는 무름병원세균 Pectobacterium carotovorum subsp. carotovorum (Pcc)에 대한 기내 길항효과를 나타내었으며, 온실 내 포트에서 배추 무름병에 대한 생물적 방제 효과를 병원균 접종 4, 8, 12일 후 각각 조사한 결과 KLC02 균주는 64%, 50%, 56%, KPB3 균주는 66%, 57%, 58%로 나타났다. 반면, KLF01 균주는 KLC02 및 KPB3 균주에 비해 그 효과가 다소 낮았으나 유의성이 인정될 수 있는 방제효과로 조사되었다. 또한 재배포장에서 배추 무름병에 대한 생물적 방제효과는 KLF01, KLC02 및 KPB3 모두 각각 55%, 60% 그리고 62%로 매우 효과적임을 알 수 있었다. 따라서 세 종류의 유용세균 Lactobacillus KLF01, Lactococcus KLC02 그리고 Paenibacillus KPB3 균주를 이용하여 배추 무름병을 억제하기 위한 생물적 방제제로 활용할 수 있음을 보고한다.

Keywords

References

  1. Anjum, M. A., M. R. Sajjad, N. Akhtar, M. A. Qureshi, A. Iqbal, A. R. Jami and M. Hasan (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J. Agric. Res. 45(2):137-138
  2. Ariyapitipun, T., A. Mustapha and A. D. Clarke (1999) Microbial shelf life determination of vacuum packaged fresh beef treated with polylacetic acid, and nisin solutions. J. Food. Prot. 62:913-920
  3. Benkerroum, N. and W. E. Sandine (1988) Inhibitory action of nisin against Listeria monocytogenes. J. Dairy. Sci. 71:3237-3245 https://doi.org/10.3168/jds.S0022-0302(88)79929-4
  4. Bernal, G., A. Illanes and L. Ciampi (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Elect. J. Biotechnol. 5:12-20
  5. Available from: [http://www.ejb.org/content/vol5/issue1/full/4]
  6. Champosieau, P., J. H. Daugrois, J. C. Girard, M. Royer and P. Rott (2006) Variation in albicidin biosynthesis genes and in pathogenicity of Xanthomonas albilineans, the sugarcane leaf scald pathogen. Phytopathology 96:33-45 https://doi.org/10.1094/PHYTO-96-0033
  7. Chang, I. S., B. H. Kim and P. K. Shin (1997) Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol production. Appl. Environ. Microbiol. 63:1-6
  8. Cladera-olivera, F., G. R. Caron, A. S. Motta, A. A. Souto and A. Brandelli (2006) Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Canadian J. Microbiol. 52(6):533-539 https://doi.org/10.1139/W05-159
  9. De Man, J. D., M. Rogosa and M. E. Sharpe (1960) A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23: 130-135 https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  10. Guo, Y. H., H. L. Ge, L. Y. Gong, L. X. Zhang and P. H. Sun (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29:66-72 https://doi.org/10.1016/S1049-9644(03)00124-5
  11. Hayward, A. C. (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  12. Hu, X. F., F. X. Ying, Y. B. He, Y. Y. Gao, H. M. Chen and J. S. Chen (2008) Characterization of Pectobacterium carotovorum subsp. carotovorum causing soft-rot disease on Pinellia ternata in China. Eur. J. Plant Pathol. 120:305-310 https://doi.org/10.1007/s10658-007-9219-4
  13. Jee, H. J., W. G. Kim and W. D. Cho (1999) Phytophthora root rot of Chinese cabbage and spinach caused by P. drechsleri in Korea. Plant Pathol. J. 15:28-33
  14. Kikumoto, T. (2000) Ecology and biocontrol of soft rot of Chinese cabbage. J. Gen. Plant Pathol. 66:275-277 https://doi.org/10.1007/PL00012960
  15. Klaenhammer, T. R. (1982) Bacteriocins of lactic acid bacteria. Biochimie. 70:337-349 https://doi.org/10.1016/0300-9084(88)90206-4
  16. Ko, H. S. and C. Ahn (2000) Bacteriocin production by Lactococcus lactis KCA2386 isolated from white kimchi. The Korean J. Food Sci. and Technol. 9:263-269
  17. Kotoujansky, A. (1987) Molecular genetics of pathogenesis by soft rot Erwinia. Annu. Rev. Phytopathol. 25:405-430 https://doi.org/10.1146/annurev.py.25.090187.002201
  18. Kyeremeh, G. A., T. Kikumoto, D. Chuang, Y. Gunji, Y. Takahara and Y. Ehara (2000) Biological control of soft rot of Chinese cabbage using single and mixed treatments of bacteriocinproducing avirulent mutants of Erwinia carotovora subsp. carotovora. J. Gen. Plant Pathol. 66:264-268 https://doi.org/10.1007/PL00012957
  19. Laitila, A. H., L. Alakomi, L. Raaska, T. Mattila-Sandholm and A. Haikara (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 93:556-576
  20. Lee, S. H and J. S. Cha (2001) Efficient induction of bacterial soft rot using mineral oil. Phytopathology 91:S53-S54
  21. Lin, W. H., C. F. Hwang, L. W. Chen and H. Y. Tsen (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol. 23:74-81 https://doi.org/10.1016/j.fm.2005.01.013
  22. Naidu A. S., W. R. Bidlack and R. A. Clemens (1999) Probiotics spectra of lactic acid bacteria (LAB). Crit. Rev. Food. Sci. Nutr. 39:13 https://doi.org/10.1080/10408699991279187
  23. P'erombelon, M.C.M. and A. Kelman (1980) Ecology of the soft rot Erwinias. Annu. Rev. Phytopathol. 18:361-387 https://doi.org/10.1146/annurev.py.18.090180.002045
  24. Perry, S.F., J. G. Day and M. R. McLellan (1995) Freeze drying and cryopreservation of bacteria. In: Methods in molecular biol. pp.21-30
  25. Ray, B. and M. Daeschel (1992) Food bio-preservatives of microbiological origin. CRC Press, Inc., Boca Raton, Fla. pp. 2655-322
  26. Romero, D., A. Perez-Garcia, M. E. Rivera, F. M. Cazorla and A. de Vicente (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Microbiol. and Biotechnol. 64: 263-269 https://doi.org/10.1007/s00253-003-1439-8
  27. Shrestha, A., K. Choi, K. C. Lim, H. J. Hur and S. Cho (2009) Antagonsitic effect of Lactobacillus sp strain KLF01 against soil borne plant pathogen Ralstonia solanacearum. The Korean J. Pest. Sci. 13:45-53
  28. Suk, J. K., N. S. Ipper, S. H. Lee, A. Shrestha, H. J. You, J. H. Han, J. M. Cho and C. K. Lim (2007) Effects of a soil-born Paenibacillus sp. strain KPB3 on suppression of bacterial wilt disease caused by Ralstonia solanacearum. The Korean J. Pest. Sci. 10:313-319
  29. Takahara, Y., T. Iwabuchi, T. Shiota, T. Kimura and T. Kikumoto (1993) Suppression of soft-rot lesion development by avirulent strains of Erwinia carotovora subsp. carotovora. Ann. Phytopathol. Soc. Japan 59:581-586 https://doi.org/10.3186/jjphytopath.59.581
  30. Takahara, Y. (1994) Development of the microbial pesticide for the soft rot disease. PSJ Biocont. Rept. 4:1-7
  31. Togashi, J. (1985) Studies on the distribution and survival of soft rot bacteria in Chinese cabbage following artificial inoculation and the outbreak of soft rot disease. Bulletin of the Yamagata University Agri. Sci. 9 (4):357-365
  32. Togashi, J., D. Uehara and T. Namai (2000) Biological control of the soft rot of Chinese cabbages by fluorescent antagonistic bacterium. Bulletin of the Yamagata University. Agri. Sci.13 (3):225-232
  33. Vanjildorj, E., S. Y. Song, Z. H. Yang, J. E. Choi, Y. S. Noh, S. Park, W. J. Lim, K. M. Cho, H. D. Yun and Y. P. Lim (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep. 28:1581-1591 https://doi.org/10.1007/s00299-009-0757-4
  34. Vanneste, J. L., J. H. Perry, L. J. Perry-Meyer and R. J. Bedford (1994) Erwinia herbicola Eh252 as a biological control agent of bacterial soft rot. Plant Protec. Conf. 47:198-200
  35. Visser, R., W. H. Holzapfel, J. J. Bezuidenhout and J. M. Kotze (1986) Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl. Environ. 52:552-555