• Title/Summary/Keyword: KJSB

Search Result 1,090, Processing Time 0.019 seconds

Analysis on the differences of mechanical efficiency from design characteristics of wheelchair (휠체어 디자인 특성에 따른 효율의 차이 규명)

  • Lim, Bee-Oh;Moon, Yeong-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.109-119
    • /
    • 2003
  • The purpose of this study was to investigate differences of the mechanical efficiency on the characteristics of the basketball wheelchairs(cambers & size of the handrims). Nine healthy and normal wheelchair basketball players who had no impairments to their upper extremities were volunteered to participate in this study. $VO_2$ was collected using automatic gas analyzer(vmax29). Gross efficiency, net efficiency and work efficiency were analyzed from the calculated external power output and energy expenditure. The results were followed. First, gross efficiency in the basketball wheelchairs was observed across the range from 4 to 10%. Gross efficiency in this study showed less values than that from the literature reviewed in the arm cranking(15%), racing wheelchair(above 30%), gait(27%) and cycling(18-23%). Second, the small size of handrim(61cm) at the 16 degrees of camber produced higher efficiency values than the large size of handrim(66cm) whereas the different sizes of handrim at the 20 degrees of camber did not show any pattern. Third, both faster speed($1.11^m/s{\rightarrow}1.39^m/s$) and increases in treadmill inclination produced increases in energy expenditure. The results of this study may provide not only better understanding of the mechanical efficiency with adequate camber degree and proper size of handrim but also fundamental information for manufacturing the wheelchair.

The effect of the stair heights on lower extremity joint moment in stair-ascent activity (계단 오르기 동작시 계단 높이에 따른 하지 관절 모멘트의 변화 분석)

  • Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.121-137
    • /
    • 2003
  • The purpose of this study was to investigate the effect of the stair heights on lower extremity joint moment in stair-ascent activity Data were collected by 3-D cinematography, force platform. six normal males were participated in this experiment. All subjects performed a stair-ascent in four different heights of stairs (10, 14, 18, 22cm) having a 5 step staircase. The moment of lower extremity joint was analyzed during stance phase. The results were as follows: First, the second increase of plantar flexion moment of ankle joint in the 'forward continuance' phase was not occurred for stair A and B. But it occurred for stair C and D. And the maximum plantar flexion moment increased as the stair height become higher. Second, it was shown that the maximum inversion moment of the ankle joint was the smallest at stair B and it increased significantly at stair C. Third, maximum extension moment appeared in the 'pull-up' phase. And it increased as the stair height become higher. Fourth, it was shown that the maximum abduction moment of the knee joint was the smallest at stair C and it increased significantly at stair C. Fifth, maximum extension moment of hip joint increased significantly at stair C. Sixth, remarkable value of adduction moment occurred at hip joints and maximum adduction moment increased at stair D.

A Comparative Analysis of X-factor Stretch between Driver and Iron Swing in Male Professional Golfers (남자 프로골퍼의 드라이버와 아이언 스윙 시 X-factor Stretch에 관한 비교 분석)

  • Park, Tae-Jin;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • The purpose of this study was conducted to make a comparative biomechanical analysis of X-factor and X-factor stretch during driver and iron swing. The subjects were composed of 10 professional golfers with more than 10 years career. The result was as follows: First, the analysis of the back swing with driver and iron swing showed no differences statistically between both the timing in horizontal rotating of shoulder and hip, the time required for X-factor stretch also showed no differences statistically. Second, the back swing with a driver swing showed more maximum horizontal rotation of shoulder and hip joint than the back swing with an iron swing, but the twist of shoulder and hip that was X-factor stretch angle showed no difference. Third, the GRF of the max value for the left and right foot during shoulder and hip horizontal rotation of back swing showed no differences statistically in the movement of driver and iron swing during the back swing, and the GRF of X-factor stretch for the left and right foot showed no differences statistically in driver and iron swing. Therefore the result of this research showed that the operation of torso(X-factor stretch) and weight shifting were similar although the horizontal rotation of body was different during the driver and iron swing.

Kinematical Analysis of Projection Factors to Record Difference dur ing Women's Javelin Throwing (여자 창던지기 시 기록 차이에 따른 투사요인의 운동학적 분석)

  • Park, Jae-Myoung;Yoon, Seok-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.457-467
    • /
    • 2010
  • This study intends to analyze the projection factors' difference on each record of women's javelin throwing. For this purpose, the research analyzed the best record and the lowest one of athletes in top 1~7 ranks respectively, who participated in 2009 Daegu Pre-Championship Meeting. For analyze kinematic factors, we analyzed their game photos mainly shot by 3 cameras installed in side places. The used analysis program was Kwon3D 3.1. Analysis variables were the projection velocity, angle, height, trunk lean angle, and supporting leg's knee angle. The results concluded as follows: Different record showed statistically significant differences(p<.05) in terms of horizontal velocity and resultant velocity. There were no statistically significant differences in the variables of projection angle, its height, trunk lean angle and knee angle of support leg. But for the analyzed results to each individual characteristics, the horizontal velocity, projection height, knee angle of support leg and trunk lean angle of release event appeared to have influence on record.

Comparative Analysis of Nordic Walking and Normal Gait Based on Efficiency (노르딕 워킹과 일반 보행의 효율성 비교 분석)

  • Kim, Ro-Bin;Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • The purpose of this study were to analyze the changes in kinematic and kinetic parameters and to find biomechanical benefits of Nordic Walking and normal gait performed under the same velocity. Nine participants(age: $26.73{\pm}3.28$ year, height: $182.45{\pm}4.62\;cm$, weight: $76.59{\pm}6.84\;kg$) was chosen. The velocity of gait was set by 5.75 km/h which was made by a Nordic Walking professional. The data were collected by using VICON with 8 cameras to analyze kinematic variables with 200 Hz and force platform to analyze kinetic variables with 2000 Hz. The results of this study were as follows. First, when compared with Normal gait, Nordic Walking group showed decreased Plantarflexion angle and ROM. Second, Nordic Walking group showed decreased knee flexion angle and ROM. Third, Nordic Walking group showed increased hip joint movement. Fourth, Nordic Walking group showed higher active GRF but decreased loading rate from delayed Peak Vertical GRF time and increased impulse. Fifth, Nordic Walking group showed longer ground contact time. Through this study, we found that Nordic Walking showed higher stability and efficiency during gait than normal gait and that Nordic Walking may help people who have walking difficulties.

Relationship between the Biomechanical Analysis and the Qualitative Analysis of Video Software for the Walking Movement (보행동작에 대한 바이오메카닉스적 분석과 비디오의 정성적 분석의 상호관련성)

  • Bae, Young-Sang;Woo, Oh-Goo;Lee, Jeong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.421-427
    • /
    • 2010
  • The purpose of this study was to investigate the relationship between the quantitative analysis of biomechanical movement and the qualitative analysis of video software in order to evaluate for the walking movement. The fourteen collegiate students who agreed with the purpose and method of this study participated as subjects. The slow walking and fast walking of the subjects in the place of experiment were photographed, and calculated several mechanical factors. This empirical evidence from the experiment indicated the significant difference(p<.001) between each distant factors of the walking movement for both analyses methods, but there was no statistically significant difference between the spacial factors observed in the experiment. For more detail, no significant difference between the walking ratios that expressed the coordination between stride length and stride frequency was found. The findings also indicated the high coefficient of correlation(over r=.9) which supports higher explanation force for the biomechanical method and the Dartfish video software method. Therefore, if the data was gathered by using the proper experimental method, the video software method could be used just like the quantitative data of biomechanical method.

The Effect of Spor ts Taping on Lower Extremity Muscles in Ver tical Jump (수직점프 시 스포츠 테이핑이 하지의 운동학적 변인에 미치는 영향)

  • Lee, Jong-Hun;Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of taping-tape with or without using spiral taping on vertical jump. The subjects for this study were about 20 years old healthy male college students without muscloskeletal diseases. Data for EMG activity and Ground Reaction Force(GRF) were estimated at three knee angles(i.e., 45, 90 & full degree). As a result, there was no statistical significance in max GRF at 90 and full degree regardless of spiral taping-tape. On the other hand, statistical significance was found when vertically jumping at 45 degree knee angle(p<.05). All the data for EMG activity at the three knee angles were not statistically significant, but there was a trend for a decrease in average EMG activity in elector spinae & Medial gastrocnemius at 90 degree knee angle. Based on these data, initial flexor action of knee was stabilized with spiral taping-tape when vertically jumping, resulting in improved muscular activity in Medial gastrocnemius. In conclusion, taping technique for jumping ability associated muscles like quadriceps is also required to develop.

Comparisons of Abdominal Muscles Thickness During Single Leg Holding Exercise on Stable Surface and on a Foam Roller Using Ultrasound Imaging (안정된 면과 폼 롤러 위에서 한 발 들기 자세 시 초음파를 이용한 복근들의 두께 양상 비교)

  • Jung, Do-Young;Koh, Eun-Kyung;Kim, Su-Jeong;Kwon, Oh-Yun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.415-420
    • /
    • 2010
  • The purpose of this study was to compare the thickness of the abdominal muscles during single leg holding exercise (SLH) in a hooked lying position on stable surface and on a foam roller. Healthy twenty subjects who had no medical history of lower extremity or lower back pain were recruited for this study. Muscle thickness of transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) was recorded using real-time ultrasonography during SLH. Paired t-test with Bonferroni adjustment was used to compare the muscles thickness during SLH on stable surface and on a foam roller. The result showed that TrA and IO muscle demonstrated greater thickness during SLH on foam roller than those on the stable surface. This finding suggests that SLH on an unstable foam roller is more effective to increase thicknesses of TrA and IO muscles than stable surface.

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

Lower Extremity Stiffness Characteristics in Running and Jumping: Methodology and Implications for Athletic Performance

  • Ryu, Joong Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Objective: The human body is often modelled as a spring-mass system. Lower extremity stiffness has been considered to be one of key factor in the performance enhancement of running, jumping, and hopping involved sports activities. There are several different classification of lower extremity stiffness consisting of vertical stiffness, leg stiffness, joint stiffness, as well as muscle and tendon stiffness. The primary purpose of this paper was to review the literature and describe different stiffness models and discuss applications of stiffness models while engaging in sports activities. In addition, this paper provided a current update of the lower extremity literature as it investigates the relationships between lower extremity stiffness and both functional performance and injury. Summary: Because various methods for measuring lower extremity stiffness are existing, measurements should always be accompanied by a detailed description including type of stiffness, testing method and calculation method. Moreover, investigator should be cautious when comparing lower extremity stiffness from different methods. Some evidence highlights that optimal degree of lower extremity stiffness is required for successful athletic performance. However, the actual magnitude of stiffness required to optimize performance is relatively unexplored. Direct relationship between lower extremity stiffness and lower extremity injuries has not clearly been established yet. Overall, high stiffness is potentially associate risk factors of lower extremity injuries although some of the evidence is controversial. Prospective injures studies are necessary to confirm this relationship. Moreover, further biomechanical and physiological investigation is needed to identify the optimal regulation of the lower limb stiffness behavior and its impact on athletic performance and lower limb injuries.