• Title/Summary/Keyword: KJHST

Search Result 154, Processing Time 0.021 seconds

Effects of Pre Harvest Light Treatments (LEDs, Fluorescent Lamp, UV-C) on Glucosinolate Contents in Rocket Salad (Eruca sativa) (수확 전 LED, 형광등, UV-C 조사가 로켓 샐러드 내 글루코시놀레이트 함량에 미치는 영향)

  • Lee, Hye-Jin;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.178-187
    • /
    • 2017
  • The aim of this study was to investigate the effect of different light sources on the levels of glucosinolates (GSLs) in rocket salad (Eruca sativa L.). The light sources used in the study were: natural light (Control-1 or 2), red light-emitting diodes(LEDs), blue LEDs, mixed red and blue LEDs (R+B LEDs), white LEDs, fluorescent lamps (FL), and fluorescent lamps plus UV-C (FL+UV-C). Two separate experiments were conducted [Experiment I: Control-1, Red LED, Blue LED, Mix (R+B) LED and Experiment II: Control-2, White LED, FL, FL+UV-C] because of the limited number of growth chambers in our laboratory. The rate of increase in the length of rocket salad leaves was the highest under red LEDs and, FL confirming that red LED and, FL affect the growth of rocket salad. We separated and identified seven types of GSLs from the rocket salad:glucoraphanin, diglucothiobeinin, glucoerucin, glucobrassicin, dimeric 4-mercaptobutyl GSL, 4-methoxyglucobrassicin, and gluconasturtiin. The highest total GSL contents in Eexperiment I was found in plants grown under in red LEDs ($4.30{\mu}mol{\cdot}g^{-1}\;dry$ weight, DW), and the lowest under blue LEDs ($0.17{\mu}mol{\cdot}g^{-1}\;DW$). The highest total GSL contents in Experiment II was found in plants grown under FL ($13.45{\mu}mol{\cdot}g^{-1}\;DW$), and the lowest in FL+UV-C ($0.39{\mu}mol{\cdot}g^{-1}\;DW$). Especially in Experiment II, the content of dimeric 4-mercaptobutyl, which has a strong aroma and spicy flavor in rocket salad, was higher under FL and white LEDs than in Control-2, increasing by approximately 14.9 and 3.2-fold respectively. Therefore, light sources such as red LEDs, white LEDs and FL affected the accumulation of GSLs in rocket salad.

Development of an Effective Method for Testing Resistance to Black Spot of Radish Caused by Alternaria brassicicola (Alternaria brassicicola에 의한 무 검은무늬병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Hun;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.210-219
    • /
    • 2017
  • This study was conducted to establish an efficient screening method for radish (Raphanus sativus) cultivars that are resistant to black spot, which is caused by Alternaria brassicicola. Seven A. brassicicola isolates were selected and investigated for their ability to produce spores and pathogenicity. Of these isolates, A. brassicicola KACC 40036 and 43923 produced abundant spores in V-8 juice agar medium and showed pathogenicity and strong virulence on radish seedlings. We examined the resistance of 61 commercial cultivars of radish to A. brassicicola KACC40036, and found that there are no highly resistant radish cultivars; however, some cultivars, such as 'Geumbong' and 'Searom', showed weak resistance to A. brassicicola. For further study, we selected four radish cultivars that showed different disease responses to A. brassicicola KACC40036. According to the growth stage of the radish seedlings, inoculum concentration, and incubation temperature of radish, development of black spot on four cultivars has been investigated. The results showed that younger seedlings were more sensitive to A. brassicicola than older seedlings, and the disease severity depended on the concentration of the spore suspension. The disease severity of plants incubated in humidity chamber at $25^{\circ}C$ was greater than that of plants grown at $20^{\circ}C$ or $30^{\circ}C$. Taken together, we suggest the following method for screening for radish plants that are resistant to A. brassicicola: 1) inoculate 16-day-old radish seedlings with an A. brassicicola spore suspension ($2.0{\times}10^5spores{\cdot}mL^{-1}$) using the spray method, 2) incubate the inoculated plants in a humidity chamber at $25^{\circ}C$ for 24 h and then transfer the plants to a growth chamber at $25^{\circ}C$ with 80% relative humidity under a 12 h light/dark cycle, and 3) assess the disease severity of the plants two days after inoculation.

Quality Changes in Tomato Fruits Caused by Genotype and Environment Interactions (재배환경과 유전형의 상호작용에 따른 토마토 과실 품질 변화)

  • Park, Minwoo;Chung, Yong Suk;Lee, Sanghyeob
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • Bred and grown around the world, tomato (Solanum spp.) has highly valuable fruits containings various anti-oxidants such as lycopene, flavonoids, glutamine, and ${\beta}-carotene$. Several studies have explored, way in which to enhance the growth, management and quality of tomato, we focus on the management of growth for yield rather than quality. The expression of superior agronomic traits depends on where cultivars are grown. We evaluated 10 cultivars grown in three environment for their lycopene. HTL3137 ($70.48mg{\cdot}kg^{-1}$), which was grown in Yoeju in spring/summer, contained the highest lycopene content, while HTL10256 ($20.9mg{\cdot}kg^{-1}$), which was grown in Suwon in spring/summer, contain the least lycopene.Correlations between color components and lycopene content varied according to growing location and season. In spring/summer-grown tomatoes from Suwon, no significant correlation was observed between any color component (redness [R], greenness [G], blueness [B], luminosity, $L^*$, $a^*$, $b^*$, hue and chroma) and lycopene content. A correlation was observed between B and lycopene content in tomatoes grown in Yeoju during the same season. In tomatoes grown in Yeoju in fall/winter, significant correlations were found between lycopene content and G, luminosity, $L^*$, and hue. Variance in interactions between genotype, environment, and genotype ${\times}$ environment (G ${\times}$ E) using Minimum Norm Quadratic Unbiased Estimate (MINQUE) analysis indicated that lycopene content depends on genotype (51.33%), environment (49.13%), and G ${\times}$ E (21.43%). However, when the Additive Main Effects and Multiplicative Interaction (AMMI) was used, the G ${\times}$ E value was highest.

Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS (ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별)

  • Hong, Min-Ji;Yang, Dae-Hwa;Jeong, Ok-Cheol;Kim, Yang-Ji;Park, Mi-Young;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Park, Shin-Young;Yang, Paul;Song, Pill-Soon;Ko, Suk-Min;Lee, Hyo-Yeon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysiagrasses are important turf plants used for school playgrounds, parks, golf courses, and sports fields. The two most popular zoysiagrass species are Zoysia japonica and Zoysia sinica. These are widely distributed across different growing zones and are morphologically distinguishable from each other; however, it is phenotypically difficult to differentiate those that grow along the coastal line from those in beach area habitats. A combination of morphological and molecular approaches is desirable to efficiently identify these two plant cultivars. In this study, we used a rapid identification system based on DNA barcoding of the nrDNA-internal transcribed spacer (ITS) regions. The nrDNA-ITS regions of ITS1, 5.8S nrDNA, and ITS2 from Z. japonica, Z. sinica, Agrostis stolonifera, and Poa pratensis were DNA barcoded to classify these grasses according to their molecular identities. The nrDNA-ITS sequences of these species were found at 686 bp, 687 bp, 683 bp, and 681 bp, respectively. The size of ITS1 ranged from 248 to 249 bp, while ITS2 ranged from 270 to 274 bp. The 5.8S coding region ranged from 163 - 164bp. Between Z. japonica and Z. sinica, nineteen (2.8%) nucleotide sites were variable, and the G+C content of the ITS region ranged from 55.4 to 63.3%. Substitutions and insert/deletion (indel) sites in the nrDNA-ITS sequence of Z. japonica and Z. sinica were converted to cleaved amplified polymorphic sequence (CAPS) markers, and applied to the Zoysia grasses sampled to verify the presence of these markers. Among the 62 control and collected grass samples, we classified three groups: 36 Z. japonica, 22 Z. sinica, and 4 Z. japonica/Z. sinica hybrids. Morphological classification revealed only two groups; Z. japonica and Z. sinica. Our results suggest that used of the nrDNA-ITS barcode region and CAPS markers can be used to distinguish between Z. japonica and Z. sinica at the species level.

Production of Citrus Plants from Ovule Cell Culture and Verification of CTV - free Plants (배주배양 세포로부터 감귤 식물체의 획득 및 감귤 트리스테자 바이러스 무병주 검증)

  • Jin, Seong Beom;Park, Jae Ho;Park, Suk Man;Lee, Dong Hoon;Yun, Su Hyun
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.121-130
    • /
    • 2017
  • This study was carried out to investigate a method for producing cultured virus - free ovules for breeding high - quality Citrus cultivars. Ovules from the immature fruits of three citrus cultivars native to Jeju (Dongjeongkyool, Cheongkyool, and Jikak) and two cultivars of Citrus unshiu Marc. (Miyagawa wase and Haryejosaeng) that were thought to be infected with Citrus tristeza virus (CTV) were cultured on MS2 medium (Murashige - Skoog [MS] basal medium containing $500mg{\cdot}L^{-1}$ malt extract, $50g{\cdot}L^{-1}$ sucrose, $1.0 mg{\cdot}L^{-1}$ kinetin, and $8g{\cdot}L^{-1}$ agar). After four weeks of culture, 10, 21, 13, 5, and 7 somatic embryos and 2, 4, 2, 4, and 5 white callus cells (surrounding green somatic embryos) were obtained from Dongjeongkyool, Cheongkyool, Jikak, Miyagawa wase, and Haryejosaeng, respectively. After six weeks of culture, somatic embryos were obtained from cultured cells grown on MT basal medium supplemented with malt extract ($500mg{\cdot}L^{-1}$), lactose ($70g{\cdot}L^{-1}$), and agar ($16g{\cdot}L^{-1}$). Over 60% of the somatic embryos from citrus cultivars native to Jeju developed into normal plants on MS basal medium supplemented with malt extract ($500mg{\cdot}L^{-1}$), sucrose ($50g{\cdot}L^{-1}$), and agar ($8g{\cdot}L^{-1}$) after 10 weeks of culture. Normal plants were regenerated from two Citrus unshiu Marc. cultivars on MT basal medium supplemented with sorbitol (1.0 M), galactose (1.0 M), $GA_3$ ($1.0mg{\cdot}L^{-1}$), and Gelrite ($3g{\cdot}L^{-1}$). The absence of virus in plants generated from cultured ovules was confirmed by RT - PCR and antigen - antibody reactions. Therefore, virus - free Citrus cells can be obtained for breeding high - quality citrus cultivars using the biotechnological technique evaluated in this study.

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.) (한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

Impact of Rising Global Temperatures on Growth, Mineral Composition, and Photosynthesis in Radish in a Winter Cropping System (월동무의 생장, 무기성분 조성과 광합성에 미치는 온도 상승의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Song, Eun Young;Son, In-Chang;Wi, Seung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • We investigated the effects of rising temperatures on the photosynthesis, mineral composition, and growth of radish (Raphanus sativus var. hortensis) in a winter cropping system using a temperature gradient tunnel to predict the impact of rising global temperatures. Vegetative growth, including shoot and root fresh and dry weights, shoot length, and root length and diameter, was high under elevated temperatures (ambient $+4^{\circ}C$ and $+7^{\circ}C$) compared with ambient temperature. At elevated temperatures, the N, P, Ca, Mg, and Fe contents were high in shoots, whereas in roots, the K, Ca, Mg, and Fe contents were high and the Cu content was low. The maximum photosynthetic rates ($22.1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+4^{\circ}C$ and $22.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at ambient temperature $+7^{\circ}C$) at elevated temperatures were more than twice that ($9.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at ambient temperature, whereas the water use efficiency was lower at elevated temperatures. These results suggest that rising global temperatures will lead to increased mineral absorption and photosynthesis in radish in winter cropping systems, subsequently favoring plant growth, although the water requirements will be high.

The Effects of High Air Temperature and Waterlogging on the Growth and Physiological Responses of Hot Pepper (고온 및 침수에 의한 고추의 생육 및 생리적 반응에 미치는 영향)

  • Lee, Hee Ju;Park, Sung Tae;Kim, Sung Kyeom;Choi, Chang Sun;Lee, Sang Gyu
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study was conducted to investigate the effects of waterlogging on the net photosynthetic rate, root activity and fruit yield of hot pepper. Plants were grown in two greenhouses: extractor fans and side ventilators began to operate when the inside temperature reached $25^{\circ}C$ in one greenhouse and $35^{\circ}C$ in the other. Waterlogging treatments were performed 54 days after transplanting (when fruit setting at the second flower truss was complete). The plot in each greenhouse was divided into five sections, and each section was watered for 0, 12, 24, 48 or 72 h using drip irrigation. Plants under $25^{\circ}C$ and non - waterlogging treatment exhibited in the greatest growth among treatments. Plant growth generally decreased as the waterlogging period increased. The net photosynthetic rate was highest under non - waterlogging and $25^{\circ}C$ treatment and lowest under 72 h waterlogging and $25^{\circ}C$ treatment. The root activity decreased as the waterlogging period increased, except for plants under 72 h waterlogging treatment at $35^{\circ}C$. The number and weight of red pepper fruits per plant were highest under non - waterlogging treatment at $35^{\circ}C$. The greatest fruit yield was also observed under non - waterlogging treatment at $35^{\circ}C$, with production reaching 3,697 kg / 10a. At the appropriate temperature for hot pepper ($25^{\circ}C$), yields were reduced by 25 - 30% under 12, 24 and 48 h waterlogging treatment compared to non - waterlogging treatment. These results indicate that longer waterlogging periods reduce the growth, net photosynthetic rate, root activity and yields of hot pepper. However, the net photosynthetic rate and stomatal conductance of hot pepper plants grown under 72 h waterlogging treatment recovered nine days after growth under normal growth conditions.

Occurrence of White Rust and Growth of Chrysanthemum 'Baekma' by Control of Relative Humidity with Night Ventilation and Heating in the Greenhouse (국화 '백마'의 시설재배에서 야간 환기와 난방에 의한 상대습도 조절에 따른 흰녹병 발생과 생육)

  • Yoo, Yong Kweon;Roh, Yong Seung;Nam, Byung Cheol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.845-859
    • /
    • 2016
  • This study was conducted to examine the effect of nighttime ventilation and heating on changes in temperature and humidity, the occurrence of white rust, and growth of standard chrysanthemum (Dendranthema grandiflorum) 'Baekma' in a greenhouse. For the ventilation treatments, the mean nighttime humidity in the control greenhouse, which had a closed side window, was higher (94.5%), but the humidity in the natural and natural+fan ventilation treatments was lower (74.3% and 72.8%, respectively). The rate of occurrence of white rust at 34 days after treatment was 100, 98.3, 75.6, and 43.3% for the control, fan ventilation, natural ventilation, and natural+fan ventilation treatments, respectively. The number of infected leaves and telia were the lowest in the natural+fan ventilation treatment compared with the other treatments. The growth of the chrysanthemum 'Baekma' was significantly suppressed in the control because of the occurrence of white rust and high humidity, while plant height, number of leaves, stem diameter, and fresh weight were the greatest in the natural+fan ventilation treatment. For the heating treatments, the mean nighttime temperature of the control (RH 95% heating), which was heating and held at 95% humidity, was $18.4^{\circ}C$, while the temperature of the heating treatment, which was held at 70% relative humidity (RH 70% heating) was $25.8^{\circ}C$. The rate of occurrence of white rust (34.4%), number of infected leaves (0.9), and telia (1.0) were the lowest in the RH 70% heating treatment compared with the other heating conditions. Also, the RH 70% heating treatment showed the best growth in terms of plant height, stem diameter, number of leaves, and fresh weight. Therefore, the natural+fan ventilation and RH 70% heating treatments were effective for the control of white rust and the growth of standard chrysanthemum 'Baekma' in a greenhouse.

Breeding of 'Joyskin' Pear as fruit for Eating with the Skin (껍질째 먹는 배 '조이스킨' 육성)

  • Kim, Yoon-Kyeong;Kang, Sam-Seok;Cho, Kwang-Sik;Won, Kyung-Ho;Shin, Il-Sheob;Kim, Myung-Su;Ma, Kyeong-Bok;Lee, In Bog
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.959-965
    • /
    • 2016
  • In 1994, a new cultivar 'Joyskin' was created from a cross between the cultivars 'Whangkeumbae' and 'Waseaka' at the Pear Research Institute of the National Institute of Horticultural and Herbal Science, Rural Development Administration. In 2006, the 'Joyskin' was selected from among the 317 seedlings resulting from the cross for its skin and taste qualities. Regional adaptation tests were conducted in nine regions and in ten experimental plots from 2006 to 2011. The cultivar was named in 2011. 'Joyskin' showed a vigorous growth habit and semi-spread characteristics similar to 'Whangkeumbae'. The average full bloom date for 'Joyskin' was April 21st, which was also similar to 'Whangkeumbae'. The optimum fruit ripening time was September 6-8th, which was six or eight days earlier than 'Whangkeumbae'. The fruit was round in shape and the skin was a golden yellow color at maturity. The average fruit weight was 320 g and the flesh firmness was $2.5kg/8mm{\varphi}$. The firmness of the fruit skin determined by a blade-type plunger of texture analyzer was 22.9 N, which was significantly different from that of 'Whangkeumbae' 29.9N. Stone cell analysis of 'Joyskin' by phloroglucinol-HCl, showed that 'Joyskin' stone cells were small in size and few in numbers cpmpared to those of cultivars of was 'Manpungbae', 'Niitaka', and 'Whangkeumbae'. The patent application for 'Joyskin' was submitted in April, 2012 (Grant No. 2012-337). In 2016, 'Joyskin' (Grant No. 5895) was registered as a separate record, with uniformity and stability per Korean Seed Industry Law.