• 제목/요약/키워드: KIS 신용평점

검색결과 3건 처리시간 0.018초

기술혁신활동이 부도위험에 미치는 영향 : 한국 유가증권시장 및 코스닥시장 상장기업을 중심으로 (Technology Innovation Activity and Default Risk)

  • 김진수
    • 기술혁신연구
    • /
    • 제17권2호
    • /
    • pp.55-80
    • /
    • 2009
  • 기술혁신활동은 타 기업에 대한 진입장벽 구축, 공정개선 및 신제품 개발을 가능하게 함으로써 이익의 증대, 안정적 수익원의 확보 및 매출액의 증대를 가능하게 한다. 또한 기존 기업에게 신기술에 대한 대응력과 내재되어 있는 역량의 증대를 가능하게 함으로써 생존의 기회를 부여한다. 따라서 기술혁신활동은 부도위험을 줄일 수 있다. 그러나 기술혁신활동은 많은 자원의 투입을 필요로 함과 동시에 이에 내재된 성공의 불확실성으로 말미암아 오히려 기업의 부도위험을 증가시킬 수 있다. 이에 본 연구는 기업의 기술혁신활동이 부도위험에 미치는 영향을 분석하고자 한다. 기술혁신활동이 부도위험에 미치는 영향의 분석을 위해 본 연구는 2000년부터 2008년 까지 한국거래소 유가증권시장과 포스닥시장에 계속 상장된 기업으로 산업분류 상 제조업을 영위하는 기업을 대상으로 하였다. 기술혁신활동의 대용변수는 기존 연구에서 밭이 이용되고 있는 연구개발집약도를, 부도위험의 대용변수는 Black & Scholes(1973)의 유럽형 콜옵션 가격결정모형에 기반한 Merton(1974)의 타인자볼자격결정모형을 이용하여 측정된 부도확률을 각각 사용하였다. 추가적으로 부도위험의 대용변수로써 KIS 신용평점을 이용하여 강건성 검정을 실시하였으며, 주요 실증분석 결과는 다음과 같다. 첫째, 전체표본과 이를 유가증권시장표본 및 코스닥시장표본으로 나누어 분석한 결과 모든 표본에 있어 기술혁신활동의 대용변수인 연구개발집약도는 1% 수준에서 유의한 음(-)의 회귀계수를 보였다. 기업의 소속 시장 여부와 관계없이 기술혁신활동이 부도위험을 낮추는 중요한 변수임을 알 수 있었다. 둘째, 전체표본을 기업규모(대기업표본 및 중소기업표본), 기업연령(상위 50% 표본 및 하위 50% 표본) 및 신용평점(10~6점 표본 및 5~1점 표본)에 따라 분류하여 분석한 결과 모든 표본에 있어 연구개발집약도의 회귀계수는 유의수준에서 다소 차이를 보일 뿐 음(-)의 유의한 값을 보였다. 기업규모, 기업연령 및 신용평점의 정도와 관계없이 기술혁신활동이 증가할수록 부도위험이 감소함을 확인하였다. 셋째, 연구개발비는 자산과 비용으로 처리되는 그 여부와 관계없이 모두 부도위험과 음(-)의 유의한 관계를 가짐을 확인하였다. 또한 KIS 신용평점을 이용하여 분석한 강건성 검정 결과 기업의 소속 시장 여부와 관계없이 기술혁신활동이 부도위험을 낮추는 중요한 변수임을 거듭 확인할 수 있었다. 실증분석결과 본 연구는 기술혁신활동이 부도위험을 감소시키는 중요한 변수임을 확인하였다. 기업의 부도위험을 낮추기 위해 경영자는 기술혁신활동에 대한 지속적인 관심과 투자가 필요하겠으며, 국가의 기업지원 방향 역시 기업의 기술혁신활동을 촉진할 수 있도록 설계 되어야 하겠다.

  • PDF

기업 인적자원 관련 변수를 이용한 기업 신용점수 모형 구축에 관한 연구 (A Study for Building Credit Scoring Model using Enterprise Human Resource Factors)

  • 이영섭;박주완
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.423-440
    • /
    • 2007
  • 본 논문의 목적은 기업 신용점수에 영향을 미치는 기업 인적자원 요소들을 찾아서 기업 신용점수 모형을 구축하는 것이다. 모형 구축을 위해 사용된 자료는 2005년 한국직업능력개발원의 인적자본 기업패널 (Human Capital Corporate Panel, HCCP) 설문조사 자료와 한국신용평가(주)의 KIS-신용평점모델에서 생성된 기업 신용점수이다. 모형 구축을 위한 독립변수는 McLagan (1989)의 '인적자원 바퀴모델'을 토대로 인적자본 기업패널 설문조사 문항을 선택하여 사용하였으며, 종속변수로는 기업 신용평가점수를 사용하였다. 또한 기업 인적자원 관련 변수를 이용한 기업 신용점수 모형 구축을 위해 로지스틱 회귀모형을 사용하였다. 모형 구축 결과 최종적으로 선택된 변수는 22개였다 영역별로 세분화해서 살펴보면 대분류 기준으로 HRD 영역은 6개, HRM 영역은 15개, 기타 1개이고, 중분류 기준으로 개인개발 2개, 경력개발 2개, 조직개발 2개, 조직직무설계 1개, 인적자원계획 4개, 정보체계 2개, 보상 및 장려 6개, 복지후생 1개, 노사관계 1개, 기업규모 1개가 선택되었다. 구축된 모형을 평가하기 위하여 10등급 교차타당성 분석을 통한 오분류율, G-mean은 각각 30.81, 68.27이었다. 그리고 반응율은 가장 좋은 십분위가 가장 나쁜 십분위보다 약 6.08배가 크고 점차 감소하는 경향을 보이고 있다. 그러므로 구축된 모형은 기업 인적자원 관련 변수를 이용해 기업 신용점수를 측정하는데 적당한 모형이라는 결론을 내릴 수 있다

시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례 (LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction)

  • 이현상;오세환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권1호
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.