• Title/Summary/Keyword: KEPCO software

Search Result 85, Processing Time 0.02 seconds

Application of Logistic Simulation for Transport of SFs From Kori Site to an Assumed Interim Storage Facility

  • Kim, Young-Min;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.61-74
    • /
    • 2021
  • A paradigm shift in the government's energy policy was reflected in its declaration of early closure of old nuclear plants as well as cancellation of plans for the construction of new plants. To this end, unit 1 of Kori Nuclear Power Plant was permanently shut down and is set for decommission. Based on these changes, the off-site transport of spent fuels from nuclear power plants has become a critical issue. The purpose of this study is to develop an optimized method for transportation of spent fuels from Kori Nuclear Power Plant's units 1, 2, 3, and 4 to an assumed interim storage facility by simulating the scenarios using the Flexsim software, which is widely used in logistics and manufacturing applications. The results of the simulation suggest that the optimized transport methods may contribute to the development of delivery schedule of spent fuels in the near future. Furthermore, these methods can be applied to decommissioning plan of nuclear power plants.

Data Modeling for Developing the Baseline Network Analysis Software of Korean EMS System (한국형 EMS 시스템의 Baseline 계통 해석용 소프트웨어 개발을 위한 데이터 모델링)

  • Yun, Sang-Yun;Cho, Yoon-Sung;Lee, Wook-Hwa;Lee, Jin;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1842-1848
    • /
    • 2009
  • This paper summarizes a data modeling for developing the baseline network analysis software of the Korean energy management system (EMS). The study is concentrated on the following aspects. First, the data for operating the each application software are extracted. Some of the EMS network application softwares are selected for basis model. Those are based on the logical functions of each software and are not considered the other softwares. Second, the common data are extracted for equipment model and topological structure of power system in Korea. We propose the application common model(ACM) that can be applied whole EMS network application softwares. The ACM model includes the hierarchy and non-hierarchy power system structure, and is connected each other using the direct and indirect link. Proposed database model is tested using the Korea Electric Power Corporation(KEPCO) system. The real time SCADA data are provided for the test. Through the test, we verified that the proposed database structure can be effectively used to accomplish the Korean EMS system.

Application of Sequence Diagrams to the Reverse Engineering Process of the ESf-ccs

  • Hasan, Md. Mehedi;Elakrat, Mohamed;Mayaka, Joyce;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Reverse engineering involves examining a system or component so as to comprehend its structure, functionality, and operation. Creation of a system model in reverse engineering can serve several purposes: test generation, change impact analysis, and the creation of a new or modified system. When attempting to reverse engineering a system, often the most readily accessible information is the system description, which does not readily lend itself to use in Model Based System Engineering (MBSE). Therefore, it is necessary to be able to transform this description into a diagram, which clearly depicts the behavior of the system as well as the interaction between components. This study demonstrates how sequence diagrams can be extracted from the systems description. Using MBSE software, the sequence diagrams for the Engineered Safety Features Component Control System (ESF-CCS) of the Nuclear Power Plant are created. Sequence diagrams are chosen because they are a means of representing the systems behavior and the interaction between components. In addition, from these diagrams, the system's functional requirements can be elicited. These diagrams then serve as the baseline of the reverse engineering process and multiple system views are subsequently be created from them, thus speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.

Control Hierarchy Analysis of Haenam-Cheju HVDC system (해남-제주 HVDC 계통의 제어 계층 구조 분석)

  • Kwak, Joo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1327-1330
    • /
    • 1999
  • In this paper control hierarchy of Haenam-Cheju HVDC link are analyzed and their functional specifications are summarized related to their level. The control functions for the submarine DC transmission are implemented by software programs on 16-bit parallel processor-based machines which are composed of subunits hierarchically linked each other

  • PDF

Development of RCM analysis software for Korean nuclear power plants

  • Young-Ho kim;Park, Kwang-Hee;Jeong, Hyeong-Jong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.374-379
    • /
    • 1998
  • A software called KEPCO RCM workstation (KRCM) has been developed to optimize the maintenance strategies of Korean nuclear power plants. The program modules the KRCM were designed in a manner that combines EPRI methodologies and KEPRI analysis technique. The KRCM is being applied to the three Pilot systems, chemical and volume control system, main steam system, and compressed air system of Yonggwang units 1&2. In addition, the KRCM can be utilized as a tool to meet a part of the requirements maintenance rule (MR) imposed by U.S. NRC.

  • PDF

Systems Engineering Approach to develop the FPGA based Cyber Security Equipment for Nuclear Power Plant

  • Kim, Jun Sung;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • In this work, a hardware based cryptographic module for the cyber security of nuclear power plant is developed using a system engineering approach. Nuclear power plants are isolated from the Internet, but as shown in the case of Iran, Man-in-the-middle attacks (MITM) could be a threat to the safety of the nuclear facilities. This FPGA-based module does not have an operating system and it provides protection as a firewall and mitigates the cyber threats. The encryption equipment consists of an encryption module, a decryption module, and interfaces for communication between modules and systems. The Advanced Encryption Standard (AES)-128, which is formally approved as top level by U.S. National Security Agency for cryptographic algorithms, is adopted. The development of the cyber security module is implemented in two main phases: reverse engineering and re-engineering. In the reverse engineering phase, the cyber security plan and system requirements are analyzed, and the AES algorithm is decomposed into functional units. In the re-engineering phase, we model the logical architecture using Vitech CORE9 software and simulate it with the Enhanced Functional Flow Block Diagram (EFFBD), which confirms the performance improvements of the hardware-based cryptographic module as compared to software based cryptography. Following this, the Hardware description language (HDL) code is developed and tested to verify the integrity of the code. Then, the developed code is implemented on the FPGA and connected to the personal computer through Recommended Standard (RS)-232 communication to perform validation of the developed component. For the future work, the developed FPGA based encryption equipment will be verified and validated in its expected operating environment by connecting it to the Advanced power reactor (APR)-1400 simulator.

A Systems Engineering Approach to Implementing Hardware Cybersecurity Controls for Non-Safety Data Network

  • Ibrahim, Ahmad Salah;Jung, Jaecheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-114
    • /
    • 2016
  • A model-based systems engineering (MBSE) approach to implementing hardware-based network cybersecurity controls for APR1400 non-safety data network is presented in this work. The proposed design was developed by implementing packet filtering and deep packet inspection functions to control the unauthorized traffic and malicious contents. Denial-of-Service (DoS) attack was considered as a potential cybersecurity issue that may threaten the data availability and integrity of DCS gateway servers. Logical design architecture was developed to simulate the behavior of functions flow. HDL-based physical architecture was modelled and simulated using Xilinx ISE software to verify the design functionality. For effective modelling process, enhanced function flow block diagrams (EFFBDs) and schematic design based on FPGA technology were together developed and simulated to verify the performance and functional requirements of network security controls. Both logical and physical design architectures verified that hardware-based cybersecurity controls are capable to maintain the data availability and integrity. Further works focus on implementing the schematic design to an FPGA platform to accomplish the design verification and validation processes.

Development of Field Programmable Gate Array-based Reactor Trip Functions Using Systems Engineering Approach

  • Jung, Jaecheon;Ahmed, Ibrahim
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1047-1057
    • /
    • 2016
  • Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

Development of ESS Based on VRFB-LFPB Hybrid Batteries (VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구)

  • Cheon, Young Sik;Park, Jin Soo;You, Jinho;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

A Systems Engineering Approach for Uncertainty Analysis of a Station Blackout Scenario

  • de Sousa, J. Ricardo Tavares;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 2019
  • After Fukushima Dai-ichi NPP accident, the need for implementation of diverse and flexible coping strategies (FLEX) became evident. However, to ensure the effectiveness of the safety strategy, it is essential to quantify the uncertainties associated with the station blackout (SBO) scenario as well as the operator actions. In this paper, a systems engineering approach for uncertainty analysis (UA) of a SBO scenario in advanced pressurized water reactor is performed. MARS-KS is used as a best estimate thermal-hydraulic code and is loosely-coupled with Dakota software which is employed to develop the uncertainty quantification framework. Furthermore, the systems engineering approach is adopted to identify the requirements, functions and physical architecture, and to develop the verification and validation plan. For the preliminary analysis, 13 uncertainty parameters are propagated through the model to evaluate the stability and convergence of the framework. The developed framework will ultimately be used to quantify the aleatory and epistemic uncertainties associated with an extended SBO accident scenario and assess the coping capability of APR1400 and the effectiveness of the implemented FLEX strategies.