• Title/Summary/Keyword: KEPCO Grid

Search Result 215, Processing Time 0.021 seconds

Hardware Simulator for LVRT Operation Analysis of Grid-Tied PMSG Wind Power System (계통연계형 PMSG 풍력발전시스템의 LVRT 동작 분석을 위한 하드웨어 시뮬레이터)

  • Lee, Jae-Wook;Kim, Jae-Hyuk;Choi, Young-Do;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1219-1226
    • /
    • 2014
  • This paper introduces a hardware simulator for the LVRT operation analysis of the grid-tied PMSG wind power system with a power dissipation circuit. The power dissipation circuit, which is composed of chopper and resistor, suppresses the sudden increase of DC-link voltage in the back-to-back converter of the grid-tied PMSG wind power system. The LVRT operation was first analyzed using computer simulations with PSCAD/EMTDC. A wind power simulator including the power dissipation circuit and the fault simulator composed of variac and IGBT were built to analyze the LVRT operation. Various experiments were conducted to verify the effectiveness of the power dissipation circuit for the LVRT operation. The developed hardware simulator can be extensively utilized for the analysis of various LVRT operations of the grid-tied wind power system.

Study on the Voltage Stabilization Technology Using Photovoltaic Generation Simulator in Three-Level Bipolar Type DC Microgrid

  • Kim, Taehoon;Kim, Juyong;Cho, Jintae;Jung, Jae-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1123-1130
    • /
    • 2018
  • Voltage stabilization is an essential component of power quality in low voltage DC (LVDC) microgrid. The microgrid demands the interconnection of a number of small distributed power resources, including variable renewable generators. Therefore, the voltage can be maintained in a stable manner through the control of these distributed generators. In this study, we did research on the new advanced operating method for a photovoltaic (PV) simulator in order to achieve interconnection to a bipolar LVDC microgrid. The validity of this voltage stabilization method, using the distributed generators, is experimentally verified. The test LVDC microgrid is configured by connecting the developed PV simulator and DC load, DC line, and AC/DC rectifier for connecting the main AC grid. The new advanced control method is applied to the developed PV simulator for the bipolar LVDC grid in order to stabilize the gird voltage. Using simulation results, the stabilization of the grid voltage by PV simulator using the proposed control method is confirmed the through the simulation results in various operation scenarios.

Introduction of The First Demonstration Project for the Application of HTS Cable and SFCL to Real Smart Grid in South Korea (22.9kV 고온 초전도 케이블.초전도 한류기 스마트 그리드 적용을 위한 초전도 시범사업)

  • Yang, B.;Park, J.;Lee, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.34-38
    • /
    • 2010
  • Until now some countries including South Korea have made big progress and many efforts in the development of high temperature superconductor (HTS) power equipments. Especially, HTS Cable and superconducting fault current limiter (SFCL) are the strongest candidates among them from the viewpoint of applying to real grid. In South Korea, HTS cable and SFCL have been installed in test fields and tested successfully at Gochang PT Center of KEPCO. In order to meet practical requirements and be feasible in real grid, a demonstration project for HTS cable and SFCL systems, called GENI(green superconducting electric power network at Icheon substation) project, has been initiated to install 23kV HTS cable and SFCL systems in a utility network in South Korea since 2008. Namely, it says the first demonstration project for the application HTS system to real smart grid in South Korea. This paper presents the design and the application plan of the 22.9kV HTS cable and SFCL in 154kV Icheon substation in South Korea with the viewpoint of applying in Smat Grid.

Probabilistic Reliability Analysis of KEPCO System Using TRELSS

  • Tran Trung Tinh;Kwon Jung-Ji;Choi Jae-Seok;Choo Jin-Boo;Jeon Dong-Hun;Han Kyoeng-Nam;Billinton Roy
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • The importance of conducting necessary studies on grid reliability evaluation has become increasingly important in recent years due to the number of blackout events occurring throughout the world. Additionally, quantitative evaluation of transmission system reliability is very important in a competitive electricity environment. The reason behind this is that successful operation of an electric power company under a deregulated electricity market depends on transmission system reliability management. The results of many case studies for the Korea Electric Power Cooperation (KEPCO) system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6.2 are illustrated in this paper. The TRELSS was developed by EPRI and Southern Company Services Inc. This paper presents the reliability analysis of KEPCO system expansion planning by using the TRELSS program.

A Study on Security of AMI(Advanced Metering Infrastructure) in SMARTGRID (스마트 그리드에서의 AMI 보안에 관한연구)

  • Kim, Yeoun-Soo;Kim, Jin-Cheol;Ko, Jong-Bin;Shon, Tae-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1014-1023
    • /
    • 2012
  • Recently with improvement of SMART Grid, AMI network security has been affecting the environment for Electric information and communication. The system and communication protection consists of steps taken to protect the AMI components and the communication links between system components from cyber intrusions. The addition of two way communications between SUN and HAN introduces additional risk for unauthorized access to the AMI system. In this paper, we propose new AMI device authentication infrastructure, key establishment and security algorithm based on public key encryption to solve AMI network security problems.

Performance Test of MGT Combined Heat & Power System (마이크로 가스터빈 열병합 발전시스템 성능평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.313-316
    • /
    • 2006
  • As Decentralized Generation(DG) becomes more reliable and economically feasible, it is expected that a higher application of DG units would be interconnected to the existing grids. This new market penetration of DG technologies is linked to a large number of factors like technologies costs and performances, interconnection issues, safety, market regulations, environmental issues or grid connection constrains. Korea Electric Power Corporation (KEPCO) has researched performance characteristics of the 60k W class 1) basic start-up & shutdown operation analysis 2) interconnection test 3) MGT -absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated. The suggested strategy and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

  • PDF

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.