• Title/Summary/Keyword: KDS code

Search Result 14, Processing Time 0.017 seconds

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

Mechanism of Seismic Earth Pressure on Braced Excavation Wall Installed in Shallow Soil Depth by Dynamic Centrifuge Model Tests (동적원심모형실험을 이용한 얕은 지반 굴착 버팀보 지지 흙막이 벽체의 지진토압 메커니즘 분석)

  • Yun, Jong Seok;Park, Seong Jin;Han, Jin Tae;Kim, Jong Kwan;Kim, Dong Chan;Kim, DooKie;Choo, Yun Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.193-202
    • /
    • 2023
  • In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.

Service Life Variation for RC Structure under Carbonation Considering Korean Design Standard and Design Cover Depth (국내설계기준과 피복두께를 고려한 RC 구조물의 탄산화 내구수명의 변동성)

  • Kim, Yun-Shik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.15-23
    • /
    • 2021
  • In this paper, service life for RC(Reinforced Concrete) substructure subjective to carbonation was evaluated through deterministic and probabilistic method considering field investigation data and Design Code(KDS 14 20 40). Furthermore changes in service life with increasing COV(Coefficient of Variation) and equivalent safety index meeting the same service life were studied. From the investigation, the mean and its COV of cover depth were evaluated to 70.0 ~ 90.0 mm and 0.2, respectively. With intended failure probability of 10.0 % and 70 mm of cover depth, service life decreased to 137 years, 123 years, and 91 years with increasing COV of 0.05, 0.1, and 0.2, respectively. In the case of 80 mm of cover depth, it changes to 179 years, 161 years, and 120 years with increasing COV. The equivalent safety index meeting the same service life from deterministic method showed 1.66 ~ 3.43 for 70 mm of cover depth and 1.61 ~ 3.24 for 80 mm of cover depth, respectively. The various design parameters covering local environment and quality condition in deterministic method yields a considerable difference of service life, so that determination of design parameters are required for exposure conditions and parameter variation.

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.