Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.12
/
pp.1872-1879
/
2022
Recently, with the development of artificial intelligence technology, research to use artificial intelligence to detect hacking attacks is being actively conducted. However, the fact that security data is a representative imbalanced data is recognized as a major obstacle in composing the learning data, which is the key to the development of artificial intelligence models. Therefore, in this paper, we propose a W-VAE oversampling technique that applies VAE, a deep learning generation model, to data extraction for oversampling, and sets the number of oversampling for each class through weight calculation using K-NN for sampling. In this paper, a total of five oversampling techniques such as ROS, SMOTE, and ADASYN were applied through NSL-KDD, an open network security dataset. The oversampling method proposed in this paper proved to be the most effective sampling method compared to the existing oversampling method through the F1-Score evaluation index.
Taghanaki, Saeid Asgari;Ansari, Mohammad Reza;Dehkordi, Behzad Zamani;Mousavi, Sayed Ali
ETRI Journal
/
v.34
no.6
/
pp.847-857
/
2012
Intrusion detection systems (IDSs) have an important effect on system defense and security. Recently, most IDS methods have used transformed features, selected features, or original features. Both feature transformation and feature selection have their advantages. Neighborhood component analysis feature transformation and genetic feature selection (NCAGAFS) is proposed in this research. NCAGAFS is based on soft computing and data mining and uses the advantages of both transformation and selection. This method transforms features via neighborhood component analysis and chooses the best features with a classifier based on a genetic feature selection method. This novel approach is verified using the KDD Cup99 dataset, demonstrating higher performances than other well-known methods under various classifiers have demonstrated.
KT는 음성언어기술 연구를 10여년 이상 진행하여 왔다. 1990년 초에는 음성번역 연구를 중심으로 기초기술을 수행하여 왔으며 그 결과 1995년 5월 16일에 한-일 간 호텔예약을 위한 자동통역시험을 전자통신연구원, 일본 KDD(국제전신전화회사)와 성공적으로 수행하였다. 1995년 이후부터 유/무선통신망 응용연구 및 개발을 중심으로 수행하였다. 먼저 음성인식 증권정보 서비스를 1995년 가을부터 국내 최초로 시험서비스를 수행하였으며 1998년에는 음성인식 무인자동 교환서비스도 개발하였다(1). 2000년부터는 VoiceXML기 반 음성 언어 시스템을 개발하였으며 이를 지능망(Advanced Intelligent Network)에 수용하기 위해서 IP(Intelligent Peripheral) 에 음성인식, 음성합성기 및 VoiceXML 해석기를 통합하기 위한 연으로 다양한 음성언어서비스를 개발하여 출시하기 시작하였다[2][3][4].(중략)
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.224-227
/
2003
The Intrsuion Detecion Systems(IDS) are required the accuracy, the adaptability, and the expansion in the information society to be changed quickly. Also, it is required the more structured, and intelligent IDS to protect the resource which is important and maintains a secret in the complicated network environment. The research has the purpose to build the model for the intelligent IDS, which creates the intrusion patterns. The intrusion pattern has extracted from the vast amount of data. To manage the large size of data accurately and efficiently, the link analysis and sequence analysis among the data mining techniqes are used to build the model creating the intrusion patterns. The model is consist of "Time based Traffic Model", "Host based Traffic Model", and "Content Model", which is produced the different intrusion patterns with each model. The model can be created the stable patterns efficiently. That is, we can build the intrusion detection model based on the intelligent systems. The rules prodeuced by the model become the rule to be represented the intrusion data, and classify the normal and abnormal users. The data to be used are KDD audit data.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.660-663
/
2003
The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.
Journal of Korea Society of Industrial Information Systems
/
v.2
no.2
/
pp.189-207
/
1997
Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2006.06a
/
pp.649-653
/
2006
In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.
Journal of Korean Society of Industrial and Systems Engineering
/
v.23
no.57
/
pp.11-20
/
2000
In dynamic management environment, CEO must make an efficient decision with information & knowledge management systems based on IT(Information Technology). As a key component to cope with this current, we suggest the business performance analysis system based on KDD(Knowledge Discovery in Databases). We consider the theoretical model that is composited both Value-Added in respect of stakeholder and Economic Value-Added in respect of shareholder. Additionally we use DBMS and data mining method using Genetic Algorithms as physical model. To demonstrate the performance of the business performance analysis system, we analyse a domestic motors industry. The empirical case is based on the financial data of KISFAS(Korea Investors Services Financial Analysis System) database. The samples included in the study consist of H motors/S motors industry over the 16-year from 1981 to 1996.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.7
/
pp.633-640
/
2001
In this paper we examine the machine learning issues raised by the domain of the Intrusion Detection Systems(IDS), which have difficulty successfully classifying intruders. There systems also require a significant amount of computational overhead making it difficult to create robust real-time IDS. Machine learning techniques can reduce the human effort required to build these systems and can improve their performance. Genetic algorithms are used to improve the performance of search problems, while data mining has been used for data analysis. Data Mining is the exploration and analysis of large quantities of data to discover meaningful patterns and rules. Among the tasks for data mining, we concentrate the classification task. Since classification is the basic element of human way of thinking, it is a well-studied problem in a wide variety of application. In this paper, we propose a classifier system based on genetic algorithm, and the proposed system is evaluated by applying it to IDS problem related to classification task in data mining. We report our experiments in using these method on KDD audit data.
International journal of advanced smart convergence
/
v.6
no.3
/
pp.22-28
/
2017
With the recent development of technologies to manage vast amounts of data, data mining technology has had a major impact on all industries.. Data mining is the process of discovering useful correlations hidden in data, extracting executable information for the future, and using it for decision making. In other words, it is a core process of Knowledge Discovery in data base(KDD) that transforms input data and derives useful information. It extracts information that we did not know until now from a large data base. In the decision tree, c4.5 algorithm was used. In addition, the C4.5 algorithm was used in the decision tree to analyze the difference between frequency and mortality in the region. In this paper, the frequency and mortality of percutaneous coronary intervention for patients with heart disease were divided into regions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.