• 제목/요약/키워드: KD-($k_0$, $k_1$)-continuity

검색결과 2건 처리시간 0.016초

CONTINUITIES AND HOMEOMORPHISMS IN COMPUTER TOPOLOGY AND THEIR APPLICATIONS

  • Han, Sang-Eon
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.923-952
    • /
    • 2008
  • In this paper several continuities and homeomorphisms in computer topology are studied and their applications are investigated in relation to the classification of subs paces of Khalimsky n-dimensional space $({\mathbb{Z}}^n,\;T^n)$. Precisely, the notions of K-$(k_0,\;k_1)$-,$(k_0,\;k_1)$-,KD-$(k_0,\;k_1)$-continuities, and Khalimsky continuity as well as those of K-$(k_0,\;k_1)$-, $(k_0,\;k_1)$-, KD-$(k_0,\;k_1)$-homeomorphisms, and Khalimsky homeomorphism are studied and further, their applications are investigated.

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.