• Title/Summary/Keyword: K4

Search Result 239,199, Processing Time 0.138 seconds

Synthesis of 4-Hydroxy-1-thiocounmarin Derivatives-1 : An Efficient Synthesis of Thioflocoumafen

  • Jung, Jae-Chul;Kim, Ju-Cheun;Park, Oee-Sook;Jang, Bong-Suek
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.302-305
    • /
    • 1999
  • An efficient procedure for the preparation of 4-hydroxy-3-{1,2,3,4-tetra-hydro-3-[4-(4-trifluoromethylbenzyloxy)phenyl]-1-naphthyl}thiocoumarin (thioflocoumafen, 1a and 1b) is described. The key step in the synthesis involves the condensation reaction of 3-(4-methoxyphenyl)-1-tetralol (2) with 4-hydroxy-1-thiocoumarin (3).

  • PDF

Reactions of 3-Alkylidene-2,4-pentanediones with Arylhydrazines (3-알킬리덴-2,4-펜탄디온과 아릴히드라진의 반응)

  • Se Young Lee;Seung Hoi Kim;Youn Young Lee;Yang Mo Goo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.311-317
    • /
    • 1992
  • Reaction of 3-alkylidene-2,4-pentanediones(1) with arylhydrazines in methanol afforded 4-acetyl-(2), 4-(1-methoxyalkyl)-(3), or 4-vinylpyrazole derivatives(4). 3-(2,2,2-Trichloroethylidene)-2,4-pentanedione(9) reacted with arylhydrazines to give 4-acetyl-1-aryl-3-methylpyrazoles(11). Possible mechanisms for these reactions were proposed.

  • PDF

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Pyridinolysis of 2,4-Dinitrophenyl Phenyl Thionocarbonate: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Son, Min-Ji;Kim, Song-I;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1165-1169
    • /
    • 2011
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2,4-dinitrophenyl phenyl thionocarbonate 4 with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reactions of 4 exhibits downward curvature (i.e., ${\beta}_1$ = 0.21 and ${\beta}_2$ = 1.04), indicating that the reactions proceed through a stepwise mechanism with a change in rate-determining step. It has been found that 4 is less reactive than its oxygen analogue, 2,4-dinitrophenyl phenyl carbonate 3, although the thionocarbonate is expected to be more electrophilic than its oxygen analogue. The $pK_a$ at the center of the Br${\o}$nsted curvature, defined as $pK_a^o$, has been analyzed to be 6.6 for the reactions of 4 and 8.5 for those of 3. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio has revealed that the reactions of 4 result in smaller $k_1$ values but larger $k_2/k_{-1}$ ratios than the corresponding reactions of 3. The larger $k_2/k_{-1}$ ratios have been concluded to be responsible for the smaller $pK_a^o$ found for the reactions of 4.

Synthesis and Crystal Structure of Ag4Br4 Nanoclusters in the Sodalite Cavities of Fully K+-Exchanged Zeolite A (LTA)

  • Lim, Woo-Taik;Choi, Sik-Young;Kim, Bok-Jo;Kim, Chang-Min;Lee, In-Su;Kim, Seok-Han;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1090-1096
    • /
    • 2005
  • $Ag_4Br_4$ nanoclusters have been synthesized in about 75% of the sodalite cavities of fully $K^+$-exchanged zeolite A (LTA). An additional KBr molecule is retained in each large cavity as part of a near square-planar $K_4Br^{3+}$ cation. A single crystal of $Ag_{12}$-A, prepared by the dynamic ion-exchange of $Na_{12}$-A with aqueous 0.05 M $AgNO_3$ and washed with $CH_3OH$, was placed in a stream of flowing 0.05 M KBr in $CH_3OH$ for two days. The crystal structure of the product ($K_9(K_4Br)Si_{12}Al_{12}O_{48}{\cdot}0.75Ag_4Br_4$, a = 12.186(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm m. It was refined with all measured reflections to the final error index $R_1$ = 0.080 for the 99 reflections for which $F_o\;{\gt}\;4_{\sigma}\;(F_o)$. The thirteen $K^+$ ions per unit cell are found at three crystallographically distinct positions: eight $K^+$ ions in the large cavity fill the six-ring site, three $K^+$ ions fill the eight-rings, and two $K^+$ ions are opposite four-rings in the large cavity. One bromide ion per unit cell lies opposite a four-ring in the large cavity, held there by two eight-ring and two six-ring $K^+$ ions ($K_4Br^{3+}$). Three $Ag^+$ and three $Br^-$ions per unit cell are found on 3-fold axes in the sodalite unit, indicating the formation of nano-sized $Ag_4Br_4$ clusters (interpenetrating tetrahedra; symmetry $T_d$; diameter ca. 7.9 $\AA$) in 75% of the sodalite units. Each cluster (Ag-Br = 2.93(3) $\AA$) is held in place by the coordination of its four $Ag^+$ ions to the zeolite framework (each $Ag^+$ cation is 2.52(3) $\AA$ from three six-ring oxygens) and by the coordination of its four $Br^-$ ions to $K^+$ ions through six-rings (Br-K = 3.00(4) $\AA$).

Cloning of p-Hydroxybenzoate Degradation Genes and the Overexpression of Protocatechuate 4,5-Dioxygenase from Pseudomonas sp. K82

  • Yoon, Young-Ho;Park, Soon-Ho;Leem, Sun-Hee;Kim, Seung-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1995-1999
    • /
    • 2006
  • Pseudomonas sp. K82 cultured in p-hydroxybenzoate induces protocatechuate 4,5-dioxygenase (PCD 4,5) for p-hydroxybenzoate degradation. In this study, a 6.0-kbp EcoR1 fragment containing p-hydroxybenzoate degradation genes was cloned from the genome of Pseudomonas sp. K82. Sequence analysis identified four genes, namely, pcaD, pcaA, pcaB, and pcaC genes known to be involved in p-hydroxybenzoate degradation. Two putative 4-hydroxyphenylpyruvate dioxygenases and one putative oxidoreductase were closely located by the p-hydroxybenzoate degradation genes. The gene arrangement and sequences of these p-hydroxybenzoate degradation genes were similar to those of Comamonas testosteroni and Pseudomonas ochraceae. PcaAB (PCD4,5) was overexpressed in the expression vector pGEX-4T-3, purified using a GST column, and confirmed to have protocatechuate 4,5-dioxygenase activity. The N-terminal amino acid sequences of overexpressed PCD4,5 were identical with those of purified PCD4,5 from Pseudomonas sp. K82.

Expression of Arabidiopsis CAX4 in tomato fruits increases calcium level with no accumulation of other metallic cations

  • Jeong, Se-Woon;Han, Jeung-Sul;Kim, Kyung-Min;Oh, Jung-Youl;Kim, Byung-Oh;Kim, Chang-Kil;Chung, Jae-Dong
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.337-343
    • /
    • 2008
  • We generated transgenic tomato plants with Arabidopsis thaliana $H^+$/cation exchanger gene (C4X4) by Agrobactrium-mediated transformation. We confirmed transgene copy number and transcription by Southern and Northern blot analyses. The intact CAX4-expressing tomato (Lycopersicon esculentum) fruits contained 63-71% more calcium ($Ca^{2+}$) than wild-type fruits. Moreover, ectopic expression of C4X4 in tomato fruits did not show any significant increase of the four kinds of metallic cations analyzed ($Mg^{2+}$, $Fe^{2+}$, $Mn^{2+}$, and $Cu^{2+})$. The C4X4-expressing tomato plants including their fruits did not show any morphological alternations during whole growth period. These results suggest the enhanced Ca-substrate specificity of CAX4 exchanger in tomato. Therefore, intact CAX4 exchanger can be a useful tool for $Ca^{2+}$ nutrient enrichment of tomato fruits with reduced accumulation of undesirable cations.

Functional Roles of the Aromatic Residues in the Stabilization of the [$Fe_4S_4$] Cluster in the Iro Protein from Acidithiobacillus ferrooxidans

  • Zeng, Jia;Liu, Qing;Zhang, Xiaojian;Mo, Hongyu;Wang, Yiping;Chen, Qian;Liu, Yuandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.294-300
    • /
    • 2010
  • The Iro protein is a member of the HiPIP family with the [$Fe_4S_4$] cluster for electron transfer. Many reports proposed that the conserved aromatic residues might be responsible for the stability of the iron-sulfur cluster in HiPIP. In this study, Tyr10 was found to be a critical residue for the stability of the [$Fe_4S_4$] cluster, according to site-directed mutagenesis results. Tyr10, Phe26, and Phe48 were essential for the stability of the [$Fe_4S_4$] cluster under acidic condition. Trp44 was not involved in the stability of the [$Fe_4S_4$] cluster. Molecular structure modeling for the mutant Tyr10 proteins revealed that the aromatic group of Tyr10 may form a hydrophobic barrier to protect the [$Fe_4S_4$] cluster from solvent.

Synthesis of Novel 1,2-Diazepino[3,4-b] quinoxalines and pyridazino[3,4-b] quinoxalines (새로운 1,2-다이아제피노 [3,4-b]퀴녹살린류와 피리다지노 [3,4-b] 퀴녹살린류의 합성)

  • Kim, Ho-Sik;Lee, Seong-Uk;Jeong, Geuk;Lee, Man-Kil;Kurasawa, Yoshihisa
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.325-333
    • /
    • 2000
  • The 1,3-dipolar cycloaddition reaction of the quinoxaline 4-oxides 2 with 2-chloroacrylonitrile gave the 2,3-dihydro-1H-1,2-diazepino[3,4-b]quinoxalines 3, which were converted into the 2,3,4,6-tetrahydro-1H-1,2-diazepino[3,4-b]quinoxalines 5-7. The reaction of compounds 3 with selenium dioxide in acetic acid/water resulted in ring transformation to give the 1,4-dihydro-4-oxopyridazino[3,4-b]quinoxalines 8.

  • PDF